DOI QR코드

DOI QR Code

The Anti-Oxidant Effect of Extracts from the Vaccinium oldhami

정금나무(Vaccinium oldhami) 열매의 항산화 효과

  • Chae, Jung-Woo (Gyeonggi-do Forest Environment Research Institute) ;
  • Kong, Hye-Jin (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Mi-Ji (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Park, Jung-Yeon (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Ji-Hyang (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Young-Hun (Skin science R&D Center, Mediway Korea, Co., Ltd.) ;
  • Lee, Chang-Eon (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Kyung-Hwan (Gyeonggi-do Forest Environment Research Institute)
  • 채정우 (경기도산림환경연구소) ;
  • 공혜진 (대구한의대학교 화장품약리학과) ;
  • 이미지 (대구한의대학교 화장품약리학과) ;
  • 박정연 (대구한의대학교 화장품약리학과) ;
  • 김지향 ((주)코스메랩 피부과학연구소) ;
  • 김영훈 ((주) 메디웨이코리아 피부과학연구소) ;
  • 이창언 (대구한의대학교 화장품약리학과) ;
  • 김경환 (경기도산림환경연구소)
  • Received : 2010.06.07
  • Accepted : 2010.08.14
  • Published : 2010.08.30

Abstract

Natural compounds have been studied to substitute synthetic antioxidants. In this study, the anti-oxidant activity of 70% acetone extracts from the Vaccinium oldhami fruit was investigated for utilization as ingredients for the cosmetic and bio-industries. Anti-oxidant activity was determined by determining total polyphenolic content, electron donating ability, nitric oxide (NO) radical scavenging activity, $ABTS{\cdot}^+$ cation radical scavenging activity and hydrogen peroxide scavenging activity. The polyphenolic content of 70% acetone extracts of the Vaccinium oldhami fruit was 55.972 mg TAE/g. In electron donating activity, 70% acetone extracts of the Vaccinium oldhami fruit showed an effect of 93.9%, which was similar to BHA effect at a concentration of 500 ${\mu}g/ml$. In the NO radical scavenging ability, 70% acetone extracts of the Vaccinium oldhami fruit showed 60% at 500 ${\mu}g/ml$. $ABTS{\cdot}^+$ cation radical scavenging activity of the Vaccinium oldhami fruit at a concentration of 1000 ${\mu}g/ml$ was 75.7%. Also, hydrogen peroxide scavenging activity of 70% acetone extracts showed 80.8% at 100 ${\mu}g/ml$, whichwas higher than BHA. In the natural compound market, the most important factors are the ability to obtain high effects of a material in low concentrations and a long-lasting supply. The Vaccinium oldhami fruit can be harvested every year - this fulfills one of the requirements. From these results, we can confirm that the Vaccinium oldhami fruit has anti-oxidant abilities and has potential as a natural anti-oxidant agent to be utilized in the cosmeceutical and bio-industries.

천연물들은 현재까지 합성 항산화제들을 대체하기 위하여 많은 연구가 이뤄지고 있다. 본 연구에서는 천연 항산화제로서 화장품과 바이오산업에 적용하기 위해 정금나무 열매 70% 아세톤 추출물의 항산화능을 측정하였다. 정금나무 열매의 항산화능을 확인하기 위하여 폴리페놀의 함량을 측정, 전자공여능, $ABTS{\cdot}^+$, nitric oxide, hydrogen peroxide들의 소거 측정을 분석하여 다음과 같은 결과를 얻었다. 폴리페놀의 총 함량은 55.972 mg TAE/g로 정량 되었다. 전자공여능 실험에서는 농도 의존적으로 DPPH radical 소거능이 증가 하였으며 500 ${\mu}g/ml$에서 98% 이상의 활성을 나타내어 양성 대조군인 BHA의 활성을 초과하는 것을 알 수 있었다. $ABTS{\cdot}^+$에 대한 소거활성은 500 ${\mu}g/ml$에서 66.7%의 결과로 나타났고, nitric oxide radical 소거능은 100 ${\mu}g/ml$에서 57%의 활성을 나타내었다. 또한 정금나무 열매 70% 아세톤 추출물의 hydrogen peroxide의 소거활성은 50 ${\mu}g/ml$에서 정금나무 열매 추출물은 70% 이상의 활성을 나타났으며, BHA 보다 높은 활성을 나타내었다. 천연물의 산업화 가능성에 있어 가장 중요한 것은 재료의 영속적인 수급과 적은 농도를 첨가하여도 높은 효과를 나타내는지의 여부이다. 매년 수확이 가능한 정금나무 열매를 이용한 본 연구의 결과에서 열매의 항산화능 확인 및 화장품 등 바이오산업에 천연항산화제 원료로서의 적용 가능성을 확인할 수 있었다.

Keywords

References

  1. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204.
  2. Brand-Wiliams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Technology 28, 25-30.
  3. Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol.Res. 59, 527-605.
  4. Choi, S. Y., H. S. Cho, and N. J. Sung. 2006. The antioxidative and nitrite scavenging ability of solvent extracts from wild grape (Vitis Coignetiea) skin. J. Korean Soc. Food Sci. Nutr. 35, 961-966. https://doi.org/10.3746/jkfn.2006.35.8.961
  5. Chung, H. T., H. O. Pae, B. M. Choi, T. R. Billiar, and Y. M. Kim. 2001. Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075-1079. https://doi.org/10.1006/bbrc.2001.4670
  6. Finkel, T. and N. J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. https://doi.org/10.1038/35041687
  7. Hathway, D. E. 1966. Academic press, New York. 15, 1-6.
  8. Imokawa, G., and Y. Mishima. 1981. Biochemical characterization of tyrosinase inhibitors using tyrosinase binding affinity chromatography. Br. J. Dermatol. 104, 513-539.
  9. Jayaprakasha, G. K., R. L. Jaganmohan, and K. K. Sakariah. 2004. Antioxidant activities of flavidin in different in vitro moder systems. Bioorganic & Medicinal Chem.12, 5141-5146. https://doi.org/10.1016/j.bmc.2004.07.028
  10. Jayat, C. and M. H. Ratinaun. 1993. Cell cycle analysis by flow cytometry: principles and applications. Biol. Cell 78, 15-25. https://doi.org/10.1016/0248-4900(93)90110-Z
  11. Kim, S. I., H. S. Kim, S. Y. Ju, and Y. S. Han. 2009. A study of Antioxidative and Hypoglycemic Activities of Omija (Schizandra, chinensis Baillon) Extract under Variable Extract conditions. J. Korean Food and Nutr. Soc. 22, 41-47.
  12. Lee, J. H. and S. R. Lee, 1994. Analysis of phenolic substances content on Korea plant foods. Korean J. Food Sci. Technol. 26, 310-316.
  13. Lee, S. H., J. S. Ro, K. S. Lee, Y. J. Ahn, S. J. Kang, B. Y. Hwang, W. Y. Park, and B. T. Ahn. 1996. The phenolic components of Sapium japonicum. Yakhak Hoeji 40, 183-192.
  14. Lee, S. Y., E. J. Hwang, G. H. Kim, Y. B. Choi, C. Y. Lim, and S. M. Kim. 2005. Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L. Korea J. Food Sci. and Technol. 13, 93-100.
  15. Marcocci, L., J. J. Maguire, M. T. Droylefaix, and L. Packer. 1994. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 201, 748-755. https://doi.org/10.1006/bbrc.1994.1764
  16. Martindale, J. L. and N. J. Holbrook. 2002. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192, 1-15. https://doi.org/10.1002/jcp.10119
  17. Oh, S. J. and S. C. Koh. 2009. Screening of Antioxidative Activity and $\alpha$-Amylase Inhibitory Activity in Angiosperm Plants Native to Jeju Island. Korean J. Plant Res. 71, Seoul.
  18. Radi R., J. S. Beckman, K. M. Bush, and B. A. Freeman. 1991. Peroxynitrite oxidation of sulfhydryls, the cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250.
  19. Roterta, R., P. Nicoletta, P. Anna, P. Ananth, Y. Min, and R. E. Catherine. 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Seong, J. K. 2007. Lignan Glycosides of Vaccinium oldhami Miquel, 296, Korean. J. Pharmacogn, Seoul
  21. Slominiski, A., G. Moellmann, and E. Kuklinska. 1988. Positive regulation of melanin pigmentation by two key substrate of the melanogenic pathway, L-tyrosinase and L-dopa. J. Cell Sci. 89, 287-296.
  22. Swain, T., W. E. Hillis, and M. Ortega. 1959. Phenolic constituents of Ptunus domestica I. Quantitative analysis of phenolic constituents. Sci. of Food Agric. 10, 83-88.
  23. Yagi, A, T. Kanbara, and N. Morinobu. 1987. Inhibition of mushroom-tyrosinase by aloe extract. Planta Medica. 53, 517-519. https://doi.org/10.1055/s-2006-962799

Cited by

  1. Quality Characteristics of Pudding Using Fruit of Corni Fructus and Vaccinium Oldhamii Miq. vol.32, pp.3, 2016, https://doi.org/10.9724/kfcs.2016.32.3.316
  2. Variation of Morphological Characteristics and Anthocyanin Contents from Fruit of Vaccinium oldhamii in Korea vol.104, pp.2, 2015, https://doi.org/10.14578/jkfs.2015.104.2.193