References
- Aichelmann-reidy, M. E. and R. A. Yukna. 1998. Bone replacement grafts: the bone substitutes. Dent. Clin. North Am. 42, 491-503.
- Arrington, E. D., W. J. Smith, H. G. Chambers, A. L. Bucknel, and N. A. Davino. 1996. Complications of iliac crest bone harvesting. Clin. Orthop. 329, 300-309. https://doi.org/10.1097/00003086-199608000-00037
- Betz, R. R. 2002. Limitation of autograft and allograft: New synthetic solutions. Orthopedics 25, 561-570.
- Bhaskar, S. N., J. M. Brady, L. Getter, M. F. Grower, and T. Driskell. 1971. Biodegradable ceramic implants in bone electron and light microscopic analysis. Oral Surg. Oral Med. Oral Pathol. 32, 336-346. https://doi.org/10.1016/0030-4220(71)90238-6
- Bucholz, R. W., A. Carlton, and R. Holmes. 1987. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop. Clin. North Am. 18, 323-334.
- Costantino, P. D. and C. D. Friedman. 1994. Synthetic bone graft substitutes. Otolaryngol. Clin. North Am. 27, 1037-1075.
- Cypher, T. J. and J. P. Grossman. 1996. Biological principles of bone graft healing. J. Foot Ankle Surg. 35, 413-417. https://doi.org/10.1016/S1067-2516(96)80061-5
- Eppley, B. L., W. S. Pietrzak, and M. W. Blanton. 2005. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J. Craniofac. Surg. 16, 981-989. https://doi.org/10.1097/01.scs.0000179662.38172.dd
- Goulet, J. A., L. E. Senunas, G. L. DeSilva, and M. L. Greenfeild. 1997. Autogenous iliac crest bone graft: Complications and functional assessment. Clin. Orthop. Rel. Res. 339, 76-81. https://doi.org/10.1097/00003086-199706000-00011
- Hollinger, J. O., J. Brekke, E. Gruskin, and D. Lee. 1996. Role of bone substitutes. Clin. Orthop. 324, 55-65. https://doi.org/10.1097/00003086-199603000-00008
- Kim, S. H., J. W. Shin, S. A. Park, Y. K. Kim, M. S. Park, J. M. Mok, W. I. Yang, and J. W. Lee. 2004. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed.Mater. Res. B Appl. Biomater. 68, 69-74.
- Kishimoto, M., S. I. Kanemaru, M. Yamashita, T. Nakamura, Y. Tamura, H. Tamaki, K. Omori, and J. Ito. 2006. Cranial bone regeneration using a composite scaffold of Beta-tricalcium phosphate, collagen, and autologous bone fragments.Laryngoscope 116, 212-216. https://doi.org/10.1097/01.mlg.0000191468.45536.3f
- Martin, R. B., M. W. Chapman, N. A. Sharkey, S. L. Zissimos, B. Bay, and E. C. Shors. 1993. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 14, 341-348. https://doi.org/10.1016/0142-9612(93)90052-4
- Millis, L. D. and A. S. Martinez. 2003. Textbook of Small Animal Surgery. pp. 1875-1891, 3rd eds., Saunders. Philadelphia.
- Mundy, G. R. 1993. Vision for the future in osteoporosis research. Osteoporosis Int. 2, 29-34.
- Prokic, B. 1990. Comparative clinical study of porous hydroxyapatite and decalcified freeze-dried bone in human periodontal defects. J. Periodontol. 61, 399-404. https://doi.org/10.1902/jop.1990.61.7.399
- Schmitz, J. P., Z. Schwartz, J. O. Hollinger, and B. D. Boyan. 1990. Characterization of rat calvarial nonunion defects.Acta. Anat. 138, 185-192. https://doi.org/10.1159/000146937
- Sogal, A. and A. J. Tofe. 1999. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone for dental applications. J. Periodontol. 70, 1053-1063. https://doi.org/10.1902/jop.1999.70.9.1053
-
Wagner, J. R. 1991. A
$3\frac{1}{2}$ -year clinical evaluation of resorbable hydroxyapatite$OsteoGen^{{\circledR}}$ (HA Resorb) used for sinus lift augmentations in conjunction with the insertion of endosseous implants. J. Oral Implantol. 17, 152-164. - Wiltfang, J., K. A. Schlegel, S. Schultze-Mosgau, E. Nkenke, R. Zimmermann, and P. Kessler. 2003. Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): Does platelet-rich plasma promote its osseous integration and degradation? Clin. Oral Implants. Res. 14, 213-218. https://doi.org/10.1034/j.1600-0501.2003.140212.x
Cited by
- Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction vol.104, pp.7, 2016, https://doi.org/10.1002/jbm.a.35711
- EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model vol.5, pp.1, 2011, https://doi.org/10.7742/jksr.2011.5.1.011
- Process development of a virally-safe dental xenograft material from porcine bones vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6019
- Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits vol.7, pp.2, 2015, https://doi.org/10.15433/ksmb.2015.7.2.058