DOI QR코드

DOI QR Code

Responses of Photosynthetic Efficiency and Ascorbate Peroxidase Induced by Salt Stress in Rice (Oryza sativa L.)

벼의 salt stress에 의해 유도된 산화 stress에 대한 ascorbate peroxidase 반응

  • Koo, Jeung-Suk (Department of Molecular Biology, Dong-eui University) ;
  • Im, Kyoung-Nam (Department of Molecular Biology, Dong-eui University) ;
  • Chun, Hyun-Sik (Department of Agronomy & Medicinal Plant Resources, Jinju National University) ;
  • Lee, Chin-Bum (Department of Molecular Biology, Dong-eui University)
  • 구정숙 (동의대학교 분자생물학과) ;
  • 임경남 (동의대학교 분자생물학과) ;
  • 전현식 (진주산업대학교 생명자원과학대학 농학한약자원학부) ;
  • 이진범 (동의대학교 분자생물학과)
  • Received : 2010.06.09
  • Accepted : 2010.07.03
  • Published : 2010.08.30

Abstract

We investigated changes in photosynthesis and activity of ascorbate peroxidase (APX) that scavenges ROS as responses to oxidative stress induced by salinity in rice (Oryza sativa L.). Photosynthetic efficiency of rice leaves, monitored in terms of Fv/Fm, declined with the increase of salt concentration (100-300 mM NaCl). Salinity caused an increase of $H_2O_2$ in leaves of rice, with an increase of APX activity. Among total APX isoforms, an isoform of stromal-APX 1 in leaves of rice was completely inactivated by 300 mM NaCl, but was not affected by chilling or drought. The results suggest that salt stress acts in quite a different mechanism in relation to the activity of stromal-APX from that of other stresses such chilling and drought. We carried out RT-PCR for analysis of genes expression of APX isoforms as affected by salt stress. The expression of cytosolic APX/thylakoid-bound APX genes in leaves of rice exposed to salt stress was increased, while stromal APX gene expression rapidly declined.

Salt stress가 벼 잎 내 광합성 효율과 ascorbate peroxidase (APX) 활성에 미치는 영향을 조사하였다. 염 농도가 증가(NaCl, 100-300 mM) 할수록 Fv/Fm 값이 감소한 반면, $H_2O_2$ 양과 APX 활성은 증가하였다. APX isoforms 중 APX 1 (stromal)은 300 mM NaCl 처리 시 활성이 거의 나타나지 않는 반면, chilling이나 drought 처리 시에는 변화가 없었다. 또한 gel 상에서의 서로 다른 APX isoforms의 활성이 유전자 발현에서도 확인이 되는지를 알아보기 위해 RT-PCR을 수행하였다. 구획별 APX isoforms의 RT-PCR 수행 결과, cytosolic/thylakoid bound APX 발현양은 증가한 반면, stromal APX 발현은 매우 감소하였다. 이러한 실험 결과는 salt에 의해 구획별로 APX 활성이 영향을 받음을 나타낸다.

Keywords

References

  1. Ali, M. B., H. S. Chun, B. K. Kim, and C. B. Lee. 2002. Cadmium-induced changes in antioxidant enzyme activities in rice (Oryza sativa L. cv. Dongjin). J. Plant. Biol. 45, 134-140. https://doi.org/10.1007/BF03030305
  2. Amako, K, G. X. Chen, and K. Asada. 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 35, 497-504.
  3. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  4. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  5. Bruce, B. D., S. Perry, J. Froelich, and K, Keegstra. 1994. In Gelvin, S. B. and R. A. Schilferoot (eds.), Plant Molecular Biology Manual: In Vitro Import of Proteins into Chloroplasts, pp. J1-J15, 2nd eds., Kluwer Academic Publishers, Netherlands.
  6. Chen, G. X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998.
  7. Chen, G. X. and K Asada. 1990. Hydroxyurea and $\rho$-aminophenol are suicide inhibitors of ascorbate peroxidase. J. Biol. Chem. 265, 2775-2781.
  8. Cheong, M. S. and D. J. Yun. 2007. Salt-stress signaling. J. Plant Biol. 50, 148-155. https://doi.org/10.1007/BF03030623
  9. Creissen, G. P., A. Edwards, and P. M. Mullineaux. 1994. Glutathione reductase and ascorbate peroxidase. In CH Foyer, PM Mullineaux, eds, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, Boca Raton: CRC Press, pp 343-364.
  10. Davletova, S, L. Rizhsky, H. Liang, Z. Shengqiang, D. J. Oliver, J. Coutu, V. Shulaev, K. Schlauch, and R. Mittler R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. https://doi.org/10.1105/tpc.104.026971
  11. Foyer, C. H., M. Lelandais, and J. K. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92, 696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  12. Foyer, C. H. and G. Noctor. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  13. Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  14. Hong, C. Y., Y. Y. Chao, M. Y. Yang, S. C. Cho, and C. H. Kao. 2009. $Na^{+}$ but not $Cl^{-}$ or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. J. Plant Physiol. 166, 1598-1606. https://doi.org/10.1016/j.jplph.2009.04.001
  15. Hwang, H. J., E. M. Kim, T. H. Rhew, and C. H. Lee. 2004. Reversible photoinactivation of photosystem II during desiccation of barley (Hordeum vulgare L. cv. Albori) leaves in the light. J. Plant Biol. 47, 142-148. https://doi.org/10.1007/BF03030645
  16. Ishikawa, T., K. Yoshimura, K. Sakai, M. Tamoi, T. Takeda, and S. Shigeoka. 1998. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol. 39, 23-34. https://doi.org/10.1093/oxfordjournals.pcp.a029285
  17. Jiang, M. and J. Zhang. 2002. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53, 2401-2410. https://doi.org/10.1093/jxb/erf090
  18. Karpinski, S., C. Escobar, B. Karpinska, G. Creissen, and P. M. Mullineaux. 1997. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9,627-640. https://doi.org/10.1105/tpc.9.4.627
  19. Karpinski, S, H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen, and P. M. Mullineaux. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657. https://doi.org/10.1126/science.284.5414.654
  20. Karpinski, S, H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen, and P. M. Mullineaux. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657. https://doi.org/10.1126/science.284.5414.654
  21. Lee, D. H., Y. S. Kim, and C. B. Lee. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158, 737-745. https://doi.org/10.1078/0176-1617-00174
  22. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159, 75-85. https://doi.org/10.1016/S0168-9452(00)00326-5
  23. Li, X. J., M. F. Yang, H. Chen, L. Q. Qu, F. Chen, and S. H. Shen. 2010. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochem. Biophys. Acta. 1804, 929-940. https://doi.org/10.1016/j.bbapap.2010.01.004
  24. Lowry, O. H., N. J. Rosebrough, A. L. Fare, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
  25. Mano, S., K. Yamaguchi, M. Hayashi, and M. Nishimura. 1997. Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Letters 413, 21-26. https://doi.org/10.1016/S0014-5793(97)00862-4
  26. Mittler, R. 2002. Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci. 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  27. Mittler, R. and B. A. Zilinskas. 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J. Biol. Chem. 267, 21802-21807.
  28. Morita, S., H. Kaminaka, T. Masumura, and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40, 417–422. https://doi.org/10.1093/oxfordjournals.pcp.a029557
  29. Morita, S., H. Kaminaka, T. Masumura, and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40, 417–422. https://doi.org/10.1093/oxfordjournals.pcp.a029557
  30. Morita, S., H. Kaminaka, T. Masumura, and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40, 417–422. https://doi.org/10.1093/oxfordjournals.pcp.a029557
  31. Owens, S. 2001. Salt of the Earth, Genetic engineering may help to reclaim agricultural land lost due to salinization. EMBO Reports 2, 877-879. https://doi.org/10.1093/embo-reports/kve219
  32. Panda, D., S. G. Sharma, and R. K. Sarkar. 2008. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat. Bot. 88, 127-133. https://doi.org/10.1016/j.aquabot.2007.08.012
  33. Pnueli, L., H. Liang, M. Rozenberg, and R. Mittler. 2003. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx-1)-deficient Arabidopsis plants. Plant J. 34, 187-203. https://doi.org/10.1046/j.1365-313X.2003.01715.x
  34. Rosa, S. B., A. Caverzan, F. K. Teixeira, F. Lazzarotto, J. A. G. Silveira, S. L. Ferreira-Silva, J. Abreu-Neto, R. Margis, and M. Margis-Pinheiro. 2010. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochem. 71, 548-558. https://doi.org/10.1016/j.phytochem.2010.01.003
  35. Sano, S., M. Ueda, S. Kitajima, T. Takeda, S. Shigeoka, N. Kurano, S. Miyachi, C. Miyake, and A. Yakota. 2001. Characterization of ascorbate peroxidase from unicellular red alga Galdieria partia. Plant Cell Physiol. 42, 433-440. https://doi.org/10.1093/pcp/pce054
  36. Savoure, A., D. Thorin, M. Davey, X –J. Hua, S. Mauro, M. Van Montagu, D. Inze, and N. Verbruggen. 1999. NaCl and $CuSO_{4}$ treatments trigger distinct oxidative defense mechanisms in Nicotiana plumbaginifolia L. Plant Cell Environ. 22, 387-396. https://doi.org/10.1046/j.1365-3040.1999.00404.x
  37. Scandalios, J. G. 1994. Regulation and properties of plant catalases, pp. 275-315, In Foyer, C. H. and P. M. Mullineaux (eds.), Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, Boca Raton: CRC Press.
  38. Slooten, L., K. Capiau, M. Van Camp, M. Van Montagu, C. Sybesma, and D. Inze. 1995. Factors affecting the en-hancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol. 107, 737-750.
  39. Sohn, Y. G., B. H. Lee, K. Y. Kang, and J. J. Lee 2005. Effects of NaCl stress on germination, antioxidant responses, and praline content in two rice cultivars. J. Plant Biol. 48, 201-208. https://doi.org/10.1007/BF03030409
  40. Tanaka, T., T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, and S. Yokota. 1999. Salt tolerance of transgenic rice over expressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 148, 131-138. https://doi.org/10.1016/S0168-9452(99)00133-8
  41. Yamaguchi, K., H. Mori, and M. Nishimura. 1995. A novel isozyme of ascorbate peroxidase localized on glyoxysomal and leaves peroxisomal membranes in pumpkin. Plant Cell Physiol. 36, 1157-1162.
  42. Yoshimura, K., Y. Yabuta, T. Ishikawa, and S. Shigeoka. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123, 223-233. https://doi.org/10.1104/pp.123.1.223
  43. Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6, 66-67. https://doi.org/10.1016/S1360-1385(00)01838-0