DOI QR코드

DOI QR Code

Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I

  • 석대현 (인제대학교 의과대학 생화학교실)
  • Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
  • 투고 : 2010.05.19
  • 심사 : 2010.06.14
  • 발행 : 2010.08.30

초록

Kinesin-I은 4분자의 단백질로 구성되어 있으며, N-말단의 motor 영역과 C-말단영역을 가지는 장쇄(KHC, 또한 KIF5s로도 통용) 2분자와 KIF5s (KIF5A, KIF5B와 KIF5C)의 줄기영역과 결합하는 단쇄(KLC) 2분자로 구성되어 있다. KIF5A의 결합 단백질을 동정하기 위하여 효모 two-hybrid system을 사용하여 특이적으로 결합하는 heterotrimeric G 단백질의 ${\beta}$ 단위체 단백질($G{\beta}$)을 분리하였다. $G{\beta}$은 KIF5A의 808에서 935아미노산 부위와 결합하며, 다른 KIF5들과도 결합함을 효모 two-hybrid assay로 확인하였다. 또한 $G{\beta}$의 WD40 반복 서열은 KIF5A와의 결합에 필수영역임을 확인하였으며, 이러한 단백질간의 결합은 Glutathione S-transferase (GST) pull-down assay를 통하여 확인하였다. 생쥐의 뇌 파쇄액에 KIF5들의 항체로 면역침강을 행하여 heterotrimeric G 단백질을 확인한 결과, KIF5들은 heterotrimeric G 단백질과 특이적으로 같이 침강하였다. 이러한 결과들은 kinesin-I는 heterotrimeric G 단백질이 포함된 소포를 미세소관을 따라 이동시킴을 시사한다.

Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

키워드

참고문헌

  1. Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594. https://doi.org/10.1016/S0092-8674(00)00162-8
  2. Brendza, R. P., L. R. Serbus, J. B. Duffy, and W. M. Saxton. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. https://doi.org/10.1126/science.289.5487.2120
  3. Brickley, K., M. J. Smith, M. Beck, and F. A. Stephenson. 2005. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723-14732. https://doi.org/10.1074/jbc.M409095200
  4. Carson, J. H. and E. Barbarese. 2005. Systems analysis of RNA trafficking in neural cells. Biol. Cell 97, 51-62. https://doi.org/10.1042/BC20040083
  5. Diefenbach, R. J., J. P. Mackay, P. J. Armati, and A. L. Cunningham. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670. https://doi.org/10.1021/bi981163r
  6. Diefenbach, R. J., M. Miranda-Saksena, E. Diefenbach, D. J. Holland, R. A. Boadle, P. J. Armati, and A. L. Cunningham. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291. https://doi.org/10.1128/JVI.76.7.3282-3291.2002
  7. Fichera, M., M. Lo Giudice, M. Falco, M. Sturnio, S. Amata, O. Calabrese, S. Bigoni, E. Calzolari, and M. Neri. 2004. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63, 1108-1110. https://doi.org/10.1212/01.WNL.0000138731.60693.D2
  8. Gindhart, J. G., C. J. Desai, S. Beushausen, K. Zinn, and L. S. Goldstein. 1998. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443-454. https://doi.org/10.1083/jcb.141.2.443
  9. Gindhart, J. G. and L. S. Goldstein. 1996. Tetratrico peptide repeats are present in the kinesin light chain. Trends Biochem. Sci. 21, 52-63. https://doi.org/10.1016/S0968-0004(96)80180-0
  10. Gorska-Andrzejak, J., R. S. Stowers, J. Borycz, R. Kostyleva, T. L. Schwarz, and I. A. Meinertzhagen. 2003. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463, 372-388. https://doi.org/10.1002/cne.10750
  11. Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214. https://doi.org/10.1038/nrn1624
  12. Huber, A. 2001. Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur. J. Neurosci. 14, 769-776. https://doi.org/10.1046/j.0953-816x.2001.01704.x
  13. Kamal, A. and L. S. Goldstein. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508. https://doi.org/10.1016/S0955-0674(00)00123-X
  14. Kamal, A., G. B. Stokin, Z. Yang, C. H. Xia, and L. S. Goldstein. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459. https://doi.org/10.1016/S0896-6273(00)00124-0
  15. Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
  16. Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.
  17. Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27. https://doi.org/10.1016/S0962-8924(01)02184-5
  18. Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity.Trends Cell Biol. 12, 21-27. https://doi.org/10.1016/S0962-8924(01)02184-5
  19. Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler. 1996. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-319. https://doi.org/10.1038/279311a0
  20. Lazarov, O., G. A. Morfini, E. B. Lee, M. H. Farah, A. Szodorai, S. R. DeBoer, V. E. Koliatsos, S. Kins, V. M. Lee, P. C. Wong, D. L. Price, S. T. Brady, and S. S. Sisodia. 2005. Axonal transport, amyloid precursor protein, kinesin-1, andthe processing apparatus: revisited. J. Neurosci. 25, 2386-2395. https://doi.org/10.1523/JNEUROSCI.3089-04.2005
  21. Li, X. J., S. H. Li, A. H. Sharp, F. C. Nucifora Jr, G. Schilling, A. Lanahan, P. Worley, S. H. Snyder, and C. A. Ross. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402. https://doi.org/10.1038/378398a0
  22. Marraru, Y., M. Crouthamel, R. Irannejad, and P. B. Wedegaertner. 2007. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46, 7665-7677. https://doi.org/10.1021/bi700338m
  23. Patel, N., D. Thierry-Mieg, and J. R. Mancillas. 1993. Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proc. Natl. Acad. Sci. USA 90, 9181-9185. https://doi.org/10.1073/pnas.90.19.9181
  24. Peters, M. F., K. F. OBrien, H. M. Sadoulet-Puccio, L. M. Kunkel, M. E. Adams, and S. C. Froehner. 1997. Beta-dystrobrevin, a new member of the dystrophin family. Identification, cloning, and protein associations. J. Biol. Chem. 272, 31561-31569. https://doi.org/10.1074/jbc.272.50.31561
  25. Reid, E., M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. K. Svenson, F. L. Graham, P. C. Gaskell, A. Dearlove, M. A. Pericak-Vance, D. C. Rubinsztein, and D. A. Marchuk. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194. https://doi.org/10.1086/344210
  26. Rietdorf, J., A. Ploubidou, I. Reckmann, A. Holmstrom, F. Frischknecht, M. Zettl, T. Zimmermann, and M. Way. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3,992-1000. https://doi.org/10.1038/ncb1101-992
  27. Scholey, J. M., J. Heuser, J. T. Yang, and L. S. Goldstein. 1989. Identification of globular mechanochemical heads of kinesin. Nature 338, 355-357. https://doi.org/10.1038/338355a0
  28. Seiler, S., J. Kirchner, C. Horn, A. Kallipolitou, G. Woehlke, and M. Schliwa. 2000. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat. Cell Biol. 2, 333-338. https://doi.org/10.1038/35014022
  29. Seog, D. H., D. H. Lee, and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
  30. Setou, M., T. Nakagawa, D. H. Seog, and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802. https://doi.org/10.1126/science.288.5472.1796
  31. Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
  32. Skoufias, D. A., D. G. Cole, K P. Wedaman, and J. M. Scholey. 1994. The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477-1485.
  33. Smrcka, A. V. 2008. G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol. Life Sci. 65, 2191-2214. https://doi.org/10.1007/s00018-008-8006-5
  34. Sondek, J. and D. P. Siderovski. 2001. Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem. Pharmacol. 61, 1329-1337. https://doi.org/10.1016/S0006-2952(01)00633-5
  35. Sprang, S. R. 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639-678. https://doi.org/10.1146/annurev.biochem.66.1.639
  36. Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada, and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles im-portant for neurite building. J. Cell Biol. 148, 1255-1265. https://doi.org/10.1083/jcb.148.6.1255
  37. Takida, S. and P. B. Wedegaertner. 2003. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J. Biol. Chem. 278, 17284-17290. https://doi.org/10.1074/jbc.M213239200
  38. Takida, S. and P. B. Wedegaertner. 2003. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J. Biol. Chem. 278, 17284-17290. https://doi.org/10.1074/jbc.M213239200
  39. Tekotte, H. and I. Davis. 2002. Intracellular mRNA localization: motors move messages. Trends Genet 18, 636-642. https://doi.org/10.1016/S0168-9525(02)02819-6
  40. Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467-480. https://doi.org/10.1016/S0092-8674(03)00111-9
  41. Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970. https://doi.org/10.1083/jcb.152.5.959
  42. Wall, M. A., D. E. Coleman, E. Lee, J. A. Iniguez-Lluhi, B. A. Posner, A. G. Gilman, and S. R. Sprang. 1995. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047-1058. https://doi.org/10.1016/0092-8674(95)90220-1
  43. Wedegaertner, P. B., P. T. Wilson, and H. R. Bourne. 1995. Lipid modifications of trimeric G proteins. J. Biol. Chem. 270, 503-506. https://doi.org/10.1074/jbc.270.2.503
  44. Welte, M. A. 2004. Bidirectional transport along microtubules. Curr. Biol. 14, 525-537. https://doi.org/10.1016/j.cub.2004.06.045
  45. Yu, H., I. Toyoshima, E. R. Steuer, and M. P. Sheetz. 1992. Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 267, 20457-20464.
  46. Zhang, F. L. and P. J. Casey. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241-269. https://doi.org/10.1146/annurev.bi.65.070196.001325