참고문헌
- Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594. https://doi.org/10.1016/S0092-8674(00)00162-8
- Brendza, R. P., L. R. Serbus, J. B. Duffy, and W. M. Saxton. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. https://doi.org/10.1126/science.289.5487.2120
- Brickley, K., M. J. Smith, M. Beck, and F. A. Stephenson. 2005. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem. 280, 14723-14732. https://doi.org/10.1074/jbc.M409095200
- Carson, J. H. and E. Barbarese. 2005. Systems analysis of RNA trafficking in neural cells. Biol. Cell 97, 51-62. https://doi.org/10.1042/BC20040083
- Diefenbach, R. J., J. P. Mackay, P. J. Armati, and A. L. Cunningham. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670. https://doi.org/10.1021/bi981163r
- Diefenbach, R. J., M. Miranda-Saksena, E. Diefenbach, D. J. Holland, R. A. Boadle, P. J. Armati, and A. L. Cunningham. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291. https://doi.org/10.1128/JVI.76.7.3282-3291.2002
- Fichera, M., M. Lo Giudice, M. Falco, M. Sturnio, S. Amata, O. Calabrese, S. Bigoni, E. Calzolari, and M. Neri. 2004. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63, 1108-1110. https://doi.org/10.1212/01.WNL.0000138731.60693.D2
- Gindhart, J. G., C. J. Desai, S. Beushausen, K. Zinn, and L. S. Goldstein. 1998. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443-454. https://doi.org/10.1083/jcb.141.2.443
- Gindhart, J. G. and L. S. Goldstein. 1996. Tetratrico peptide repeats are present in the kinesin light chain. Trends Biochem. Sci. 21, 52-63. https://doi.org/10.1016/S0968-0004(96)80180-0
- Gorska-Andrzejak, J., R. S. Stowers, J. Borycz, R. Kostyleva, T. L. Schwarz, and I. A. Meinertzhagen. 2003. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463, 372-388. https://doi.org/10.1002/cne.10750
- Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214. https://doi.org/10.1038/nrn1624
- Huber, A. 2001. Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur. J. Neurosci. 14, 769-776. https://doi.org/10.1046/j.0953-816x.2001.01704.x
- Kamal, A. and L. S. Goldstein. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508. https://doi.org/10.1016/S0955-0674(00)00123-X
- Kamal, A., G. B. Stokin, Z. Yang, C. H. Xia, and L. S. Goldstein. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459. https://doi.org/10.1016/S0896-6273(00)00124-0
- Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525. https://doi.org/10.1016/j.neuron.2004.07.022
- Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.
- Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27. https://doi.org/10.1016/S0962-8924(01)02184-5
- Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity.Trends Cell Biol. 12, 21-27. https://doi.org/10.1016/S0962-8924(01)02184-5
- Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler. 1996. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-319. https://doi.org/10.1038/279311a0
- Lazarov, O., G. A. Morfini, E. B. Lee, M. H. Farah, A. Szodorai, S. R. DeBoer, V. E. Koliatsos, S. Kins, V. M. Lee, P. C. Wong, D. L. Price, S. T. Brady, and S. S. Sisodia. 2005. Axonal transport, amyloid precursor protein, kinesin-1, andthe processing apparatus: revisited. J. Neurosci. 25, 2386-2395. https://doi.org/10.1523/JNEUROSCI.3089-04.2005
- Li, X. J., S. H. Li, A. H. Sharp, F. C. Nucifora Jr, G. Schilling, A. Lanahan, P. Worley, S. H. Snyder, and C. A. Ross. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402. https://doi.org/10.1038/378398a0
- Marraru, Y., M. Crouthamel, R. Irannejad, and P. B. Wedegaertner. 2007. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46, 7665-7677. https://doi.org/10.1021/bi700338m
- Patel, N., D. Thierry-Mieg, and J. R. Mancillas. 1993. Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proc. Natl. Acad. Sci. USA 90, 9181-9185. https://doi.org/10.1073/pnas.90.19.9181
- Peters, M. F., K. F. OBrien, H. M. Sadoulet-Puccio, L. M. Kunkel, M. E. Adams, and S. C. Froehner. 1997. Beta-dystrobrevin, a new member of the dystrophin family. Identification, cloning, and protein associations. J. Biol. Chem. 272, 31561-31569. https://doi.org/10.1074/jbc.272.50.31561
- Reid, E., M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. K. Svenson, F. L. Graham, P. C. Gaskell, A. Dearlove, M. A. Pericak-Vance, D. C. Rubinsztein, and D. A. Marchuk. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194. https://doi.org/10.1086/344210
- Rietdorf, J., A. Ploubidou, I. Reckmann, A. Holmstrom, F. Frischknecht, M. Zettl, T. Zimmermann, and M. Way. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3,992-1000. https://doi.org/10.1038/ncb1101-992
- Scholey, J. M., J. Heuser, J. T. Yang, and L. S. Goldstein. 1989. Identification of globular mechanochemical heads of kinesin. Nature 338, 355-357. https://doi.org/10.1038/338355a0
- Seiler, S., J. Kirchner, C. Horn, A. Kallipolitou, G. Woehlke, and M. Schliwa. 2000. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat. Cell Biol. 2, 333-338. https://doi.org/10.1038/35014022
- Seog, D. H., D. H. Lee, and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
- Setou, M., T. Nakagawa, D. H. Seog, and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802. https://doi.org/10.1126/science.288.5472.1796
- Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. https://doi.org/10.1038/nature743
- Skoufias, D. A., D. G. Cole, K P. Wedaman, and J. M. Scholey. 1994. The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477-1485.
- Smrcka, A. V. 2008. G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol. Life Sci. 65, 2191-2214. https://doi.org/10.1007/s00018-008-8006-5
- Sondek, J. and D. P. Siderovski. 2001. Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem. Pharmacol. 61, 1329-1337. https://doi.org/10.1016/S0006-2952(01)00633-5
- Sprang, S. R. 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639-678. https://doi.org/10.1146/annurev.biochem.66.1.639
- Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada, and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles im-portant for neurite building. J. Cell Biol. 148, 1255-1265. https://doi.org/10.1083/jcb.148.6.1255
- Takida, S. and P. B. Wedegaertner. 2003. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J. Biol. Chem. 278, 17284-17290. https://doi.org/10.1074/jbc.M213239200
- Takida, S. and P. B. Wedegaertner. 2003. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J. Biol. Chem. 278, 17284-17290. https://doi.org/10.1074/jbc.M213239200
- Tekotte, H. and I. Davis. 2002. Intracellular mRNA localization: motors move messages. Trends Genet 18, 636-642. https://doi.org/10.1016/S0168-9525(02)02819-6
- Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467-480. https://doi.org/10.1016/S0092-8674(03)00111-9
- Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970. https://doi.org/10.1083/jcb.152.5.959
- Wall, M. A., D. E. Coleman, E. Lee, J. A. Iniguez-Lluhi, B. A. Posner, A. G. Gilman, and S. R. Sprang. 1995. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047-1058. https://doi.org/10.1016/0092-8674(95)90220-1
- Wedegaertner, P. B., P. T. Wilson, and H. R. Bourne. 1995. Lipid modifications of trimeric G proteins. J. Biol. Chem. 270, 503-506. https://doi.org/10.1074/jbc.270.2.503
- Welte, M. A. 2004. Bidirectional transport along microtubules. Curr. Biol. 14, 525-537. https://doi.org/10.1016/j.cub.2004.06.045
- Yu, H., I. Toyoshima, E. R. Steuer, and M. P. Sheetz. 1992. Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 267, 20457-20464.
- Zhang, F. L. and P. J. Casey. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241-269. https://doi.org/10.1146/annurev.bi.65.070196.001325