DOI QR코드

DOI QR Code

Effects of Precursor Concentrations on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

수열합성법으로 성장된 ZnO 나노막대의 전구체 농도에 따른 구조적 및 광학적 특성

  • Cho, Min-Young (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University) ;
  • Jeon, Su-Min (Department of Nano Systems Engineering, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Dong-Yul (Samsung LED) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 최현영 (인제대학교 나노시스템공학과) ;
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성 LED) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 이주인 (한국표준과학연구원) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.03.30
  • Accepted : 2010.04.27
  • Published : 2010.05.30

Abstract

ZnO nanorods were grown on ZnO seed layer by hydrothermal method. The ZnO seed layer was coated by sol-gel method, and then the ZnO nanorods on ZnO seed layer were grown with different precursor concentrations ranging from 0.01 M to 0.3 M. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were employed to investigate the structural and optical properties of the ZnO nanorods. The diameter and length of ZnO nanorods are increased and also the optical properties are enhanced as the precursor concentrations are increased.

수열합성법을 이용하여 전구체 용액 농도에 따라 성장된 ZnO 나노막대의 특성에 대한 연구를 수행하였다. ZnO 씨앗층은 sol-gel법으로 코팅하였고, 그 위에 ZnO 나노막대는 전구체 용액 농도를 0.01 M에서 0.3 M로 변화하여 성장시켰다. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), PL (photoluminescence)을 사용하여 ZnO 나노막대의 특성 변화를 분석하였다. 전구체 용액의 농도가 증가함에 따라 ZnO 나노막대의 직경과 길이가 증가하였으며 광학적 특성이 향상되었다.

Keywords

References

  1. L. Vayssieres, K. Keis, A. Hagfeldt, and S.-E. Lindquist, Chem. Mater. 13, 4395 (2001). https://doi.org/10.1021/cm011160s
  2. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998). https://doi.org/10.1063/1.368595
  3. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett. 91, 181112 (2007). https://doi.org/10.1063/1.2805073
  4. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002). https://doi.org/10.1063/1.1518810
  5. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery- Corvan, and L. M. Irving, Appl. Phys. Lett. 92, 192101 (2008). https://doi.org/10.1063/1.2924768
  6. J. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  7. M. Qiu, Z. Ye, J. Lu, H. He, J. Huang, L. Zhu, and B. Zhao, Appl. Surf. Sci. 255, 3972 (2009). https://doi.org/10.1016/j.apsusc.2008.10.093
  8. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Peaton, Appl. Phys. Lett. 85, 2002 (2003).
  9. M. T. Chen and J. M. Ting, Thin Solid Films 494, 250 (2006). https://doi.org/10.1016/j.tsf.2005.08.134
  10. 김영환, 김성일, 한국진공학회지 18, 358 (2009).
  11. 김희수, 한국진공학회지 18, 384 (2009).
  12. L. E. Greene, M. Law, H. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003). https://doi.org/10.1002/anie.200351461
  13. L. Wu, Y. Wu, W. Lu, H. Wei, and Y. Shi, Appl. Surf. Sci. 252, 1436 (2005). https://doi.org/10.1016/j.apsusc.2005.02.117
  14. Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z. Wang, and Y. Hu, J. Solid State Chem. 179, 1984 (2006). https://doi.org/10.1016/j.jssc.2006.03.035
  15. J. H. Park, P. Muralidharan, and D. K. Kim, Mater. Lett. 63, 1019 (2009). https://doi.org/10.1016/j.matlet.2009.01.076
  16. S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998). https://doi.org/10.1063/1.368295
  17. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a) 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  18. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001). https://doi.org/10.1063/1.1361288
  19. Y. Zhang, G. Du, B. Liu, H. C. Zhu, T. Yang, W. Li, D. Liu, and S. Yang, J. Crystal Growth 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  20. Z. Y. Wang, L. X. Hu, J. Zhao, J. Sue, and Z. J. Wang, Vacuum 78, 53 (2005). https://doi.org/10.1016/j.vacuum.2004.12.014
  21. X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005). https://doi.org/10.1016/j.apsusc.2004.05.144