개와 보호자에서 Extended-Spectrum $\beta$-lactamase 유전자를 획득한 다약제내성 Klebsiella pneumoniae

Extended-Spectrum $\beta$-lactamase Genes Acquired Multidrug-Resistant Klebsiella pneumoniae in a Dog and Its Owner

  • 한재익 (충북대학교 동물의료센터) ;
  • 장혜진 (충북대학교 동물의료센터) ;
  • 김근형 (충북대학교 동물의료센터) ;
  • 장동우 (충북대학교 동물의료센터) ;
  • 나기정 (충북대학교 동물의료센터)
  • Han, Jae-Ik (Veterinary Laboratory Medicine, Veterinary Medical Center, Chungbuk National University) ;
  • Jang, Hye-Jin (Veterinary Laboratory Medicine, Veterinary Medical Center, Chungbuk National University) ;
  • Kim, Gon-Hyung (Veterinary Surgery, Veterinary Medical Center, Chungbuk National University) ;
  • Chang, Dong-Woo (Veterinary Radiology, Veterinary Medical Center, Chungbuk National University) ;
  • Na, Ki-Jeong (Veterinary Laboratory Medicine, Veterinary Medical Center, Chungbuk National University)
  • 심사 : 2010.04.05
  • 발행 : 2010.04.30

초록

2년령 암컷 포메라니안이 교통사고로 인한 골반골절로 내원하여 골절 교정수술을 받았다. 그러나 수술 후 술부에서 감염으로 인한 화농성 삼출물이 발생하였고, 분리한 세균의 항생제 감수성 검사 결과 penicillins, cephalosporins, aminoglycosides, quinolones, 그리고 trimethoprim/sulfamethoxazole에 내성이 관찰되었다. 분리한 세균의 동정 및 extended-spectrum $\beta$-lactamase (ESBL) 확진시험을 통해 ESBL 생성 Klebsiella pneumoniae임을 확인하였다. 치료를 위한 Carbapenem계 항생제의 감수성 시험 결과에 따라 meropenem을 선택하여 치료에 이용하였다. 분리된 세균에서 ESBL 유전자의 분자생물학적 검사 결과 TEM-1 ESBL 유전자가 있음을 확인하였으며, 보호자의 손바닥에서 분리된 세균에서도 TEM-1, SHV-1 ESBL 유전자가 검출되었다.

A 2-year-old female Pomeranian dog was referred with multiple pelvic fractures. The surgical correction was performed for the fractures. However, after the surgery, purulent exudation was occurred in the surgical site. Antibiotic susceptibility test revealed that the isolated bacteria are resistant to penicillins, cephalosporins, aminoglycosides, quinolones, and trimethoprim/sulfamethoxazole. Bacterial identification and extended-spectrum $\beta$-lactamase (ESBL) confirming test indicated that the isolated bacteriae is ESBL-producing Klebsiella pneumoniae. Minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) tests revealed that meropenem, one of carbapenems, is the only effective antibiotic. The patient was treated with meropenem for 5 days. After 10 days, the exudation was disappeared and the infection was cured. The molecular typing of the ESBL revealed that TEM-1 ESBL is present in the bacteria isolated from the patient. The bacteria isolated from the owner's palm also revealed that TEM-1 and SHV-1 ESBLs are present.

키워드

참고문헌

  1. Alvan G, Nord CE. Adverse effects of monobactams and carbapenems. Drug Saf 1995; 12: 305-313. https://doi.org/10.2165/00002018-199512050-00003
  2. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001
  3. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-1233. https://doi.org/10.1128/AAC.39.6.1211
  4. Dzidic S, Bedekovic V. Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. Acta Pharmacol Sin 2003; 24: 519-526.
  5. Haeggman S, Lofdahl S, Paauw A, Verhoef J, Brisse S. Diversity and evolution of the class A chromosomal betalactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 2400-2408. https://doi.org/10.1128/AAC.48.7.2400-2408.2004
  6. Hirakata Y, Matsuda J, Miyazaki Y, Kamihira S, Kawakami S, Miyazawa Y, Ono Y, Nakazaki N, Hirata Y, Inoue M, Turnidge JD, Bell JM, Jones RN, Kohno S, SENTRY Asia-Pacific Participants. Regional variation in the prevalence of extended-spectrum beta-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). Diagn Microbiol Infect Dis 2005; 52: 323-329. https://doi.org/10.1016/j.diagmicrobio.2005.04.004
  7. Holten KB, Onusko EM. Appropriate prescribing of oral betalactam antibiotics. Am Fam Physician 2000; 62: 611-620.
  8. Jacoby GA. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 1994; 13: 2-11. https://doi.org/10.1007/BF02390679
  9. Jones LA, Mciver CJ, Kim MJ, Rawlinson WD, White PA. The aadB gene cassette is associated with $bla_{SHV}$ genes in Klebsiella species producing extended-spctrum $\beta-lactamases$. Antimicrob Agents Chemother 2005; 49: 794-797. https://doi.org/10.1128/AAC.49.2.794-797.2005
  10. Kim BN, Woo JH, Kim MN, Ryu J, Kim YS. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect 2002; 52: 99-106. https://doi.org/10.1053/jhin.2002.1288
  11. Lamotte-Brasseur J, Knox J, Kelly JA, Charlier P, Fonze E, Dideberg O, Frere JM. The structures and catalytic mechanisms of active-site serine beta-lactamases. Biotechnol Genet Eng Rev 1994; 12: 189-230. https://doi.org/10.1080/02648725.1994.10647912
  12. Lee SH, Kim MN, Choi SJ, Chung WS. Characteristics of extended-spectrum $\beta-lactamase$ of Escherichia coli strains isolated from clinical specimens. Korean J Clin Pathol 2000; 20: 400-409.
  13. Leverstein-van Hall MA, Box ATA, Blok HEM, Paauw A, Fluit AC, Verhoef J. Evidence of extensive interspecies transfer of integron-mediatd antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. J Infect Dis 2002; 186: 49-56. https://doi.org/10.1086/341078
  14. Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995; 39: 185-191. https://doi.org/10.1128/AAC.39.1.185
  15. Liao CH, Sheng WH, Wang JT, Sun HY, Wang HK, Hsueh PR, Chen YC, Chang SC. In vitro activities of 16 antimicrobial agents against clinical isolates of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in two regional hospitals in Taiwan. J Microbiol Immunol Infect 2006; 39: 59-66.
  16. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 5: 375-382.
  17. Martinez-Freijo P, Fluit AC, Schmitz FJ, Grek VS, Verhoef J, Jones ME. Class I integrons in gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother 1998; 42: 689-696. https://doi.org/10.1093/jac/42.6.689
  18. Mouton JW, Touzw DJ, Horrevorts AM, Vinks AA. Comparative pharmacokinet-ics of the carbapenems: clinical implications. Clin Pharmacokinet 2000; 39: 185-201. https://doi.org/10.2165/00003088-200039030-00002
  19. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Disk diffusion. 15th Informational supplement. NCCLS document M100-S15. Wayen, Pa: National Committee for Clinical Laboratory Standards; 2005.
  20. Norby SR. Neurotoxicity of carbapenems antibacterials. Drug Saf 1996; 15: 87-90. https://doi.org/10.2165/00002018-199615020-00001
  21. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  22. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extendedspectrum betalactamases. Clin Infect Dis 2004; 39: 31-37. https://doi.org/10.1086/420816
  23. Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, Bonomo RA, Rice LB, McCormack JG, Yu VL. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spctrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39: 2206-2212. https://doi.org/10.1128/JCM.39.6.2206-2212.2001
  24. Paterson DL. Extended-spectrum beta-lactamases: the European experience. Curr Opin Infect Dis 2001; 14: 697-701. https://doi.org/10.1097/00001432-200112000-00006
  25. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extendedspectrum beta-lactamases (ESBLs). Clin Microbiol Infect 2000; 6: 460-463. https://doi.org/10.1046/j.1469-0691.2000.00107.x
  26. Pitout JDD, Laupland KB. Extended-spectrum $\beta-lactamaseproducing$ Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159-166. https://doi.org/10.1016/S1473-3099(08)70041-0
  27. Rupp ME, Fey PD. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 2003; 63: 353-365. https://doi.org/10.2165/00003495-200363040-00002
  28. Tofteland S, Haldorsen B, Dahl KH, Simonsen GS, Steinbakk M, Walsh TR, Sundsfjord A, Norwegian ESBL Study Group. Effects of phenotype and genotype on methods for detection of extended-spectrum-$\beta$-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol 2007; 45: 199-205. https://doi.org/10.1128/JCM.01319-06
  29. Yu WL, Chuang YC, Jones RN. A pragmatic approach to identify extended-spctrum beta-lactamase-producing Klebsiella pneumoniae in Taiwan: in vitro activity of newer and established antimicrobial agents. Diagn Microbiol Infect Dis 2004; 48: 277-282. https://doi.org/10.1016/j.diagmicrobio.2003.11.001
  30. Yu WL, Chuang YC, Rasmussen JW. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 2006; 39: 264-277.