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A NONHARMONIC FOURIER SERIES AND DYADIC
SUBDIVISION SCHEMES

Jungsoo Rhee

Abstract. In the spectral analysis, Fourier coefficients are very impor-

tant to give informations for the original signal f on a finite domain,

because they recover f . Also Fourier analysis has extension to wavelet
analysis for the whole space R. Various kinds of reconstruction theo-

rems are main subject to analyze signal function f in the field of wavelet
analysis. In this paper, we will present a new reconstruction theorem of

functions in L1(R) using a nonharmonic Fourier series. When we con-

struct this series, we have used dyadic subdivision schemes.

1. Introduction

If a given function f has nth derivative at x0, then we have the Taylor
polynomial of degree n at x0 (i.e, if f is smooth enough around x0, the differ-
entiability gives informations for an accurate expression of f). Maybe readers
think about the local polynomial approximations like cubic splines. In anal-
ogy of the square integrable functions on R, we may guess the Fourier series
expansion on [0, 2π] or the wavelet series expansion on R(See [1], [2] and [4]).

Hence it is natural to ask whether the integrable function f on R has such
a series expression like the square integrable functions on R. The answer is
affirmative! See Section 2.

Let us start with the definition of the Fourier transform of f : for f ∈ L1(R),
the Fourier transform of f is defined by

f̂(w) =
∫ ∞
−∞

f(t)e−2πiwtdt, w ∈ R.

Here, Lp(R) is the spaces, 1 ≤ p <∞, of all measurable functions f such that

‖f‖p =
(∫

R

|f(x)|pdx
) 1
p

<∞.
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Let f and g be measurable functions on R. The convolution of f and g is the
function f ∗ g defined by f ∗ g(x) =

∫
R
f(x − y)g(y)dy for all x such that the

integral exists.
For an approach to the main subject, we state some known convergence

theorem related to convolutions. We know that even if f is in L1(R), f̂ is
not always in L1(R). But we can recover f from f̂ in some reasonable style
when f̂ /∈ L1(R). Now we modify the divergent integral

∫
R
f̂(y)e2πixydy with∫

R
f̂(y)Φ(ty)e2πixydy, where Φ is a continuous function which vanishes rapidly

enough at infinity to make the integral converges(see [3]).

Theorem 1.1. Suppose Φ ∈ L1(R) ∩ C0(R),Φ(0) = 1 and φ = Φ̂ ∈ L1(R).
Suppose also that |φ(x)| ≤ C(1 + |x|)−1−ε for some C, ε > 0. Then we have∫
R
f̂(y)Φ(ty)e2πixydy → f(x) as t→ 0, for every x in the Lebesgue set of f .

See [3] to prove the theorem.

An application of Theorem 1.1 is given when we put Φ(t) = max((1−|t|), 0).
We have the Fejer Kernel φ(x) = ( sinπx

πx )2 by a simple calculation. If we let
nφ(nx) = σ2πn(x), then f ∗σ2πn(θ) converges to f(θ) for almost all θ as n→∞
by Theorem 1.1. Thus we have the following lemma related to an approximate
identity, because σ2πn is a Dirac sequence.

Lemma 1.2. Let f ∈ L1(R). Then we have limn→∞ f ∗ σ2πn(θ) = f(θ), for
almost all θ ∈ R. Moreover, f ∗σ2πn converges to f uniformly on S, as n→∞,
when S is a compact subset of R on which f is continuous.

For the detail proof, see the example of Fejer kernel in [3] and [5].

2. Main results

Now we consider the kernel Kn(x) = σ2πn(x), that has been introduced in
the above section. Also we put

Km,n(x) =
m−1∑

k=−(m−1)

n

m

(
1− |k|

m

)
e2πni

k
mx.

Then we have

f ∗Km,n(θ) =
m−1∑

k=−(m−1)

n

m

(
1− |k|

m

)
f̂

(
nk

m

)
e2πi

nk
m θ,

where f̂(nkm ) =
∫∞
−∞ f(x)e−2πinkm xdx .

As we have seen in the above equation, one interesting part is that f ∗Km,n

has nonharmonic Fourier coefficients, f̂(nkm ).
Also, the kernel Km,n can be expressed by

Km,n(x) =
n

m

[
1 + 2

m−1∑
k=1

(
1− k

m

)
cos 2πn

k

m
x

]
.
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Thus we obtain

f∗Km,n(θ) =
n

m

[
a(0) + 2

m−1∑
k=1

(
1− k

m

)(
a

(
nk

m

)
cos 2π

nk

m
θ + b

(
nk

m

)
sin 2π

nk

m
θ

)]
,

where a(nkm ) =
∫∞
−∞ f(x) cos 2π nkm xdx and b(nkm ) =

∫∞
−∞ f(x) sin 2π nkm xdx .

Before getting into the further calculation, we need to specify Km,n as the
closed form. The following lemma shows what it is:

Lemma 2.1. We get Km,n(x) = n(sinπnx)2

m2(sinπ nmx)
2 , and we obtain

Km,n(x)−Kn(x) = Km,n(x)

(
1−

(
sinπ n

mx

π n
mx

)2
)

≤ n

(
1−

(
sinπ n

mx

π n
mx

)2
)
.

Proof. We put Fn(x) = 1
2π

∑n−1
k=−(n−1)

(
1− |k|n

)
eikx. Because Fn is the Fejer

kernel, Fn(x) = (sin n
2 x)

2

2πn(sin x
2 )2 . For the detail calculation of Fn, see [5]. Then we

have Km,n(x) = 2π n
mFm(2π n

mx). Hence the above inequality can be derived

from Kn(x) = (sinπnx)2

π2nx2 by a direct calculation. �

From Lemma 2.1, we have some close relationship between Km,n and Kn.
Since f∗Kn(x) converges to f(x) by Lemma 1.2, we wonder if f∗Km,n converges
to f . If we replace Km,n by Knα,n, then we obtain some convergence theorem
for the recovery of functions in L1(R).

Theorem 2.2. Let f ∈ L1(R) and let fn be the nth truncation of f i.e.,
fn = χ[−n,n]f . Then we get

lim
n→∞

fn ∗Knα,n(θ) = f(θ),

for almost all θ ∈ R, where α is integer greater than 2.

Proof. Since f ∗Kn(θ) converges to f(θ) for almost all θ ∈ R, it is enough to
show that for given θ and ε > 0 there exists a positive large integer n depending
on θ such that |fn ∗Knα,n(θ)− f ∗Kn(θ)| ≤ ε.

In the previous lemma, we know that

fn ∗Knα,n(θ)− f ∗Kn(θ) =
∫ θ+n

θ−n
f(θ − y)Knα,n(y)

(
1−

(
sin π

nα−1 y
π

nα−1 y

)2
)
dy

+

(∫ θ−n

−∞
+
∫ ∞
θ+n

)
f(θ − y)Kn(y)dy

= (1) + (2).
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The main part of the calculation is :

(1) ≤
∫ θ+n

θ−n
|f(θ − y)|2n

(
1−

sin π
nα−1 y
π

nα−1 y

)
dy

≤ n

3

∫ θ+n

θ−n
|f(θ − y)|

( πy

nα−1

)2

dy

≤ π2

3
(|θ|+ n)2

n2α−3
‖f‖1

≤ 4π2

3n2α−5
‖f‖1 if n > |θ|+ 1.

For a calculation of the other part, choose n large enough such that
n > |θ| + 1. Then we have |(

∫ θ−n
−∞ +

∫∞
θ+n

)f(θ − y)Kn(y)dy| ≤ 1
n‖f‖1 because

|Kn(y)| ≤ 1
π2n if |y| ≥ 1.

Then we prove our theorem. �

If we also discretize the Km,n properly using typical subdivision schemes, to
be performed in Section 3, we have a nonharmonic Fourier series for functions
in L1(R):

Theorem 2.3. Let f ∈ L1(R) and let fn be the nth truncation of f i.e.,
fn = χ[−n,n]f . Then we obtain

f(x) = lim
n→∞

n∑
l=0

22l+1−1∑
k=0

dl,k
2l

(
ãnl,k cos

kπ

2l
x+ b̃nl,k sin

kπ

2l
x

)
,

for almost all x ∈ R , where ãnl,k =
∫∞
−∞ fn(x) cos kπ

2l
xdx,

b̃nl,k =
∫∞
−∞ fn(x) sin kπ

2l
xdx, and where we put d0,0 = 1, d0,1 = 1

2 , and dl,k is
exactly the same index as in Lemma 3.1.

The corollary below, to be proved in Section 3, gives some further conver-
gence theorem for the functions of bounded support:

Corollary 2.4. Suppose that f is integrable function which is zero outside of
a bounded interval on R . Then we have

f(θ) =
∞∑
n=0

22n+1−1∑
k=0

dn,k
2n

(
an,k cos

kπ

2n
θ + bn,k sin

kπ

2n
θ

)
, for almost all θ ∈ R,

where an,k =
∫∞
−∞ f(x) cos kπ2n xdx, bn,k =

∫∞
−∞ f(x) sin kπ

2n xdx, and where we
put d0,0 = 1, d0,1 = 1

2 , and dn,k is exactly the same index as in Lemma 3.1.
Moreover, the above series converges to f uniformly on K, when f belongs

to Cc(R) with the compact support K.

Remark 2.5. Observe that, in the above theorem and corollary, we have a
convergent nonharmonic Fourier series simply localizing harmonic frequencies
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of Fourier series. Without any localization of time domain, we get series rep-
resentation like wavelets. We can compare these results to wavelet series and
other filters in the digital signal processing (see [6] and [7]). For the useful
application of Km,n, see [8].

3. Some technical proofs and subdivision schemes

Now we are ready to think about some discretization of kernels to get an infi-
nite series by means of natural subdivision schemes. Actually, we will discretize
some singular kernel into pieces to get a nonharmonic Fourier series.

First of all, we discretize the kernel Kn as Km,n using a typical dyadic
subdivision scheme. Hence we consider dyadically dilated kernel :

K2n(x) = 2n+1

∫ 1

0

(1− t) cos 2π2ntxdt

=
∫ 2n+1

0

(
1− s

2n+1

)
cosπsxds.

Also, we let gn(s, x) =
(

1− s
2n+1

)
cosπsx. Then we consider a projection

Pn(x) as sum of finite subdivision forK2n(x) defined by Pn(x) =
∑2n+1−1
k=0 gn(k, x).

Thus we obtain

Pn(x)− Pn−1(x) =
2n+1−1∑
k=0

(
1− k

2n+1

)
cosπkx−

2n−1∑
k=0

(
1− k

2n

)
cosπkx

=
2n+1−1∑
k=1

ck
2n+1

cosπkx,

where

ck =

{
k, if k ≤ 2n

2n+1 − k if k > 2n.

Roughly speaking, we are informed that limn→∞K2n(x) can be approxi-
mated to the limit of Pn(x) by the following sum :

lim
n→∞

Pn(x) = P0(x) +
∞∑
n=1

(Pn(x)− Pn−1(x))

= lim
n→∞

1 +
n∑
k=0

2k+1−1∑
i=1

ci
2k+1

cosπix


=

∞∑
n=0

cosnπx.
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Formally, we obtain the Fourier series from a dyadic subdivision scheme for
the kernel K2n :

lim
n→∞

f ∗ Pn(x) =
∞∑
n=0

∫
f(y) cosπn(x− y)dy

= a0 +
∞∑
n=1

(an cosπnx+ bn sinπnx),

where an =
∫
f(y) cosnπydy, for n = 0, 1, 2, . . . and bn =

∫
f(y) sinnπydy, for

n = 1, 2, . . .
But the above projection Pn of the kernel K2n doesn’t guarantee the conver-

gence to functions in L1(R). Hence we need some slightly different projections
Pn2n to the same kernel K2n .

Since we have K2n(x) = 2n
∫ 2

0
(1 − s

2 ) cos 2nπsxds, we put g̃n(s, x) = (1 −
s/2) cos 2nπsx. Thus we can consider projections Pn2n as the descritization of
the kernel K2n(x):

P l2n(x) = 2n

 1
2n+l

2n+l+1−1∑
k=0

g̃n

(
k

2n+l
, x

)
=

1
2l

2n+l+1−1∑
k=0

(
1− k

2n+l+1

)
cos

kπ

2l
x.

Therefore, we can find the closed form for projections Pn2n(x)−Pn−1
2n−1(x) by

a simple calculation:

Lemma 3.1. We obtain

P l2l(x)− P l−1
2l−1(x) =

22l+1−1∑
k=0

dl,k
2l

cos
kπ

2l
x,

Pn2n(x) =
n∑
l=0

22l+1−1∑
k=0

dl,k
2l

cos
kπ

2l
x,

where

cl,k =

{
k, if k ≤ 22l−1

22l − k if k > 22l−1,

d0,0 = 1, d0,1 = 1
2 , dl,2k = (−1)

(
1− 2k

22l+1

)
+ 2cl,k

22l , and dl,2k+1 =
(
1− 2k+1

22l+1

)
, l =

1, 2, 3, . . . , k = 0, 1, 2, 3, . . . .
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Proof. Now we calculate

P l2l(x)− P l−1
2l−1 = (P l2l(x)− P l−1

2l
(x)) + (P l−1

2l
(x)− P l−1

2l−1(x))

=
1
2l

22l+1−1∑
k=0

(−1)k+1

(
1− k

22l+1

)
cos

kπ

2l
x

+
1

2l−1

22l−1∑
k=1

cl,k
22l

cos
kπ

2l−1
x

=
1
2l

22l+1−1∑
k=0

dl,k cos
kπ

2l
x

and thus, we have

Pn2n(x) = P 0
20(x) +

n∑
l=1

(P l2l(x)− P l−1
2l−1(x))

=
n∑
l=0

22l+1−1∑
k=0

dl,k
2l

cos
kπ

2l
x,

where

cl,k =

{
k, if k ≤ 22l−1

22l − k if k > 22l−1,

d0,0 = 1, d0,1 = 1
2 , dl,2k = (−1)(1− 2k

22l+1 ) + 2cl,k
22l , and dl,2k+1 = (1− 2k+1

22l+1 ), l =
1, 2, 3..., k = 0, 1, 2, 3....

Hence we complete our lemma. �

In a formal manner without proofs, we obtain

lim
n→∞

f ∗ Pn2n(x) =
∞∑
n=0

22n+1−1∑
k=0

dn,k
2n

∫
f(y) cos

kπ

2n
(x− y)dy

=
∞∑
n=0

22n+1−1∑
k=0

dn,k
2n

(
an,k cos

kπ

2n
x+ bn,k sin

kπ

2n
x

)
where an,k =

∫∞
−∞ f(x) cos kπ2n xdx and bn,k =

∫∞
−∞ f(x) sin kπ

2n xdx .
Therefore, we consider the convergence of the above nonhaharmonic Fourier

series for functions in L1(R). See Theorem 2.3:

Proof of Theorem 2.3. Since the nth partial sum of the above series is Pn2n by
the construction of the series itself or by Lemma 3.1, it is enough to show that

lim
n→∞

fn ∗ Pn2n(x) = f(x)
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for almost all x ∈ R. By the definition of projections, we get

Pn2n(x) =
1
2n

22n+1−1∑
k=0

(
1− k

22n+1

)
cos

kπ

2n
x

=
1

2n+1
+

1
2n+1

1 + 2
22n+1−1∑
k=1

(
1− k

22n+1

)
cos

kπ

2n
x


=

1
2n+1

+K22n+1,2n(x)

Hence we copy Theorem 2.2 with the same method. Let θ ∈ R be given and
ε > 0 be given. We are going to choose a positive large integer n depending on
θ such that |fn ∗ Pn2n(θ)− f ∗K2n(θ)| ≤ ε. By a simple calculation we have

| fn ∗ Pn2n(θ)− f ∗K2n(θ)| ≤ |fn ∗K22n+1,2n(θ)− f ∗K2n(θ)|+ ‖f‖1
2n+1

≤
∫ θ+n

θ−n
|f(θ − y)|2n+1

∣∣∣∣1− sin π
2n+1 y
π

2n+1 y

∣∣∣∣ dy
+

(∫ θ−n

−∞
+
∫ ∞
θ+n

)
|f(θ − y)|K2n(y)dy +

‖f‖1
2n+1

≤ π2

3!
(|θ|+ n)2

2n+1
‖f‖1 +

1
π22n

‖f‖1 +
‖f‖1
2n+1

≤ cn
2

2n
‖f‖1

for some constant c when we choose n large enough such that n > |θ|+ 1.
Since f ∗K2n converges to f for almost all θ ∈ R by Lemma 1.2, this gives

our proof complete.

Proof of Corollary 2.4. Choose an interval I = [−M,M ] such that f is zero
outside of this interval I. Also we get f = fn for all n > M . The first part
of theorem is proved by the copy of Theorem 2.3. The remaining part of our
theorem for the uniform convergence is related to error estimation. See Remark
3.2 in the below for the detail proof.

Remark 3.2. An error estimation For applications of recovering functions
f ∈ L1(R) , we state some error estimation of the above convergent series. As
in Theorem 2.3, we use similar calculations to estimate error.

Let K be a compact support to the given function f ∈ Cc(R). Then we take
large M > 0 such that K ⊂ [−M,M ]. Then f(θ−y) = 0 for all y ∈ [−3M, 3M ]c
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and for all θ ∈ K. Hence we get

| f ∗ Pn2n(θ)− f ∗K2n(θ)| ≤ ‖f‖1
2n+1

+ |f ∗K22n+1,2n(θ)− f ∗K2n(θ)|

≤
∫ 3M

−3M

|f(θ − y)|2n+1

∣∣∣∣1− sin π
2n+1 y
π

2n+1 y

∣∣∣∣ dy +
‖f‖1
2n+1

≤ cM2

2n
‖f‖1

for some constant c > 0.
Also, for a given ε > 0 , we choose δ > 0 such that |f(θ − y) − f(θ)| < ε

whenever θ ∈ K and |y| < δ since f is uniformly continuous on [−3M, 3M ].
Thus we have, for all θ ∈ K,

|f ∗K2n(θ)− f(θ)| ≤
∫ δ

−δ
|f(θ − y)− f(θ)|K2n(y)dy

+

(∫ −δ
−∞

+
∫ ∞
δ

)
‖f‖∞K2n(y)dy

≤ ε+ 2
∫ ∞
δ

1
π22ny2

dy

≤ ε+
2‖f‖∞
π22nδ

.
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