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RATIONAL CURVES ARE NOT UNIT SPEED
IN THE GENERAL EUCLIDEAN SPACE

Sunhong Lee

Abstract. We invoke the characterization of Pythagorean-hodograph

polynomial curves and prove that it is impossible to parameterize any

real curves, other than a straight line, by rational functions of its arc
length.

1. Introduction

Let r(t) = (x0(t), x1(t), . . . , xn(t)) be a rational curve in the Euclidean space
Rn+1 with n ≥ 0. Unless r(t) is the trivial constant curve, there are polynomials
P0(t), . . . , Pn(t) and Q(t) in t with real coefficients such that

gcd(P0, P1, . . . , Pn, Q) = 1 and max{deg(P0), . . . ,deg(Pn),deg(Q)} ≥ 1 (1)

so that

x0(t) =
P0(t)
Q(t)

, x1(t) =
P1(t)
Q(t)

, . . . , xn(t) =
Pn(t)
Q(t)

. (2)

Since the hodograph r′(t) = (x′0(t), . . . , x′n(t)) of r(t) is given by

x′0(t) =
P ′0(t)Q(t)− P0(t)Q′(t)

Q(t)2
, . . . , x′n(t) =

P ′n(t)Q(t)− Pn(t)Q′(t)
Q(t)2

, (3)

we can see that r(t) is unit speed if and only if the polynomial curve

S(t) = (P ′0(t)Q(t)− P0(t)Q′(t), . . . , P ′n(t)Q(t)− Pn(t)Q′(t))

is Pythagorean with Q(t)2, i. e.

[P ′0(t)Q(t)− P0(t)Q′(t)]2 + · · ·+ [P ′n(t)Q(t)− Pn(t)Q′(t)]2 = [Q(t)2]2.

Thus in order to find the characterization of unit-speed rational curves, it is
of use to study the related Pythagorean polynomial curves. We present the
theorem of the characterization of unit-speed ration curves.
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Theorem 1.1. Let r(t) = (x0(t), x1(t), . . . , xn(t)) be a rational curve in the
Euclidean space Rn+1 with n ≥ 0. Then r(t) is unit speed if and only if it is
parameterized by

r(t) = (a0t+ c0, a1t+ c1, . . . , ant+ cn) (4)

for some constants a0, . . . , an and c0, . . . , cn with a2
0 + a2

1 + · · ·+ a2
n = 1.

The above theorem was proved by Farouki and Sakkalis for the plane (n = 1)
[3] in 1991 and for the space (n = 2) [4] in 2007. For the proof, Farouki and
Sakkalis used the ideas from the integration theory and the complex residue
theory, and the characterizations of Pythagorean triples [6] and quadruples [2]
of polynomials.

Recently, Sakkalis, Farouki, and Vaserstein [8] prove this theorem for the
general Euclidean space by a rather different approach. Because they do not
have the charaterization for Pythagorean polynomials, they need to work some
substitute for the characterization. In this paper, we follow the scheme of
Farouki and Sakkalis [3] and prove Theorem 1.1 for the general Euclidean space
by invoking the following characterization [5, 7] for Pythagorean (n+ 2)-tuples
of polynomials for n ≥ 0.

Proposition 1.2. [5, 7] Let r(t) = (x0(t), x1(t), . . . , xn(t)) be a polynomial
curve in the Euclidean space Rn+1 with n ≥ 1. Then the polynomial curve r(t)
is Pythagorean with a polynomial function σ(t), i. e.

x0(t)2 + x1(t)2 + · · ·+ xn(t)2 = σ(t)2,

if and only if there exist polynomial functions

U(t), V (t), A(t), B(t),W1(t), . . . ,Wn(t), H(t)

with

gcd(U, V B) = 1, gcd(V,UA) = 1, gcd(W1, . . . ,Wn) = 1 (5)

and

W1(t)2 + · · ·+Wn(t)2 = A(t)B(t), (6)

so that

x0(t) = H(t)
(
U(t)2A(t)− V (t)2B(t)

)
,

x1(t) = H(t)(2U(t)V (t)W1(t)),
...

xn(t) = H(t)(2U(t)V (t)Wn(t)),

σ(t)2 = H(t)
(
U(t)2A(t) + V (t)2B(t)

)
.
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2. Proof of the main theorem

To prove Theorem 1.1, we need the following two propositions.

Proposition 2.1. [3] Let f(t) and g(t) be real polynomials such that gcd(f, g) =
1 and deg(f) < deg(g). Suppose further that g has no real roots and deg(g) > 1.
Let (ξj , ξj) and mj, for j = 1, . . . , N , denote the distinct pairs of complex con-
jugate roots of g(t) and their respective multiplicities. Then

∫ t

0
f(s)
g(s) ds is a

rational function if and only if for j = 1, . . . , N ,

Res
(
f(t)
g(t)

, ξj

)
= 0 = Res

(
f(t)
g(t)

, ξj

)
,

where Res
(

f(t)
g(t) , ξj

)
Res

(
f(t)
g(t) , ξj

)
are the residues of f(t)

g(t) at its conjugate poles

ξj and ξj, respectively.

Proposition 2.2. [1] For a real rational function r(t) without real poles, if
r(t) has a zero at infinity of order 2 at least (i. e., if r(t) = f(t)/g(t) for some
polynomial f(t) and g(t) then deg(f) + 2 ≤ deg(g)), then∫ +∞

−∞
r(t) dt = 2πi

N∑
k=1

Res(r(t), ξk)

where (ξk, ξk) are the distinct pairs of complex conjugate poles of r(t) with
Im(ξk) > 0 for k = 1, . . . , N .

Now we prove Theorem 1.1. If r(t) is of the form (4), then r(t) is clearly
unit speed.

Conversely we suppose that r(t) is unit speed. In the case of n = 0, the
result is clearly true. So we will prove that for the case of n ≥ 1. In this case,
there are polynomials P0(t), . . . , Pn(t) and Q(t) in t with real coefficients such
that (1) so that (2). The hodograph r′(t) = (x′0(t), . . . , x′n(t)) of r(t) is given
by (3).

Since r(t) is unit speed, by Proposition 1.2 there are polynomials

U(t), V (t), A(t), B(t),W1(t), . . . ,Wn(t), H(t)

with (5) and (6), so that

P ′0(t)Q(t)− P0(t)Q′(t) = H(t)
(
U(t)2A(t)− V (t)2B(t)

)
,

P ′1(t)Q(t)− P1(t)Q′(t) = H(t)(2U(t)V (t)W1(t)),
...

P ′n(t)Q(t)− Pn(t)Q′(t) = H(t)(2U(t)V (t)Wn(t)),

Q(t)2 = H(t)
(
U(t)2A(t) + V (t)2B(t)

)
.
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From
P ′0Q− P0Q

′

Q2
=
U2A− V 2B

U2A+ V 2B
=

(UA)2 − (VW1)2 − · · · − (VWn)2

(UA)2 + (VW1)2 + · · ·+ (VWn)2

and
P ′kQ− PkQ

′

Q2
=

2UVWk

U2A+ V 2B
=

2(UA)(VWk)
(UA)2 + (VW1)2 + · · ·+ (VWn)2

for k = 1, . . . , n, we have

x0(t)− x0(0) =
∫ t

0

(U(s)A(s))2 − (V (s)W1(s))2 − · · · − (V (s)Wn(s))2

(U(s)A(s))2 + (V (s)W1(s))2 + · · ·+ (V (s)Wn(s))2
ds

and

xk(t)− xk(0) =
∫ t

0

2(U(s)A(s))(V (s)Wk(s))
(U(s)A(s))2 + (V (s)W1(s))2 + · · ·+ (V (s)Wn(s))2

ds

for k = 1, . . . , n. Now for any real numbers λ0, . . . , λn, let

y(t) =
[λ1U(t)A(t) + λ0V (t)W1(t)]

2 + · · · + [λnU(t)A(t) + λ0V (t)Wn(t)]2

(U(t)A(t))2 + (V (t)W1(t))2 + · · · + (V (t)Wn(t))2
(7)

Then since∫ t

0

y(s) ds =
λ2

1 + · · ·+ λ2
n − λ2

0

2
(x0(t)− x0(0))

+ λ0 {λ1(x1(t)− x1(0)) + · · ·+ λn(xn(t)− xn(0))}

+
λ2

1 + · · ·+ λ2
n + λ2

0

2
t,∫ t

0
y(s) ds must be rational.
We choose λ0, . . . , λn so that the degree of the numerator in (7) is two or

more less than that of denominator, in the following manner:
(a) In the case of deg(VWk) > deg(UA) for some 1 ≤ k ≤ n we set λ0 = 0

and λ1 = · · · = λn = 1. Then since
∫ t

0
y(s) ds is rational, by Proposition 2.1

and Proposition 2.2, the integral∫ +∞

−∞

n[U(s)A(s)]2

(U(s)A(s))2 + (V (s)W1(s))2 + · · · (V (s)Wn(s))2
ds

must be zero. This implies that UA = 0, so that U = 0 since A 6= 0. Therefore
we conclude that x′0(t) = −1, x′1(t) = 0, . . ., x′n(t) = 0, which implies that r(t)
is of the form (4).

(b) In case of deg(VWk) ≤ deg(UA) for all 1 ≤ k ≤ n, we take λ0 = 1 and

λk =


any constant if UA = 0,
−b/a if 0 ≤ deg(VWk) = deg(UA),
0 if deg(VWk) < deg(UA),

where a and b are the leading coefficients of UA and VWk, respectively, so that
deg(λkUA+VWk) < deg(UA) in the case of 0 ≤ deg(VWk) = deg(UA). With
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these choices for λ0, . . . , λn, since
∫ t

0
y(s) ds is rational, by Proposition 2.1 and

Proposition 2.2, the integral∫ +∞

−∞

[λ1U(s)A(s) + V (s)W1(s)]2 + · · ·+ [λnU(s)A(s) + V (s)Wn(s)]2

(U(s)A(s))2 + (V (s)W1(s))2 + · · ·+ (V (s)Wn(s))2
ds.

exists and must be zero. This induces that for k = 1, . . . , n, λkU(t)A(t) +
V (t)Wk(t) = 0. For k = 1, . . . , n, if λk 6= 0, then UA, V , and Wk are constant,
since λkUA = −VWk and gcd(UA, V ) = 1. If λk = 0, then VWk = 0, which
implies that V = 0 or Wk = 0. In this case, r(t) is of the form (4). The proof
is done.
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