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STRONG CONVERGENCE OF EXTENDED GENERAL
VARIATIONAL INEQUALITIES AND NONEXPANSIVE

MAPPINGS

Jun-Min Chen, Li-Juan Zhang, and Zhen He

Abstract. In this paper, we suggest and analyze some three step itera-

tive scheme for finding the common elements of the set of the solutions of
the extended general variational inequalities involving three operators and

the set of the fixed points of nonexpansive mappings. We also consider

the convergence analysis of suggested iterative schemes under some mild
conditions. Since the extended general variational inequalities include

general variational inequalities and several other classes of variational in-
equalities as special cases, results obtained in this paper continue to hold

for these problems. Results obtained in this paper may be viewed as a

refinement and improvement of the previously known results.

1. Introduction

Throughout this paper we assume that H is a real Hilbert space, whose
inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖ respectively. Let K be
nonempty closed and convex set in H, and T, g, h : H → H be given nonlinear
operators. We consider the problem of finding u ∈ H,h(u) ∈ K such that

〈Tu, g(v)− h(u)〉 ≥ 0, ∀v ∈ H, g(v) ∈ K. (1.1)

An inequality of type (1.1) is called extended general variational inequality in-
volving three operators, which was introduced and studied by Noor [2]. One
can show that the extended general variational inequalities provide us a uni-
fied, simple, and natural framework in which to study a wide class of problems
which arise in various areas of pure and applied sciences. Using a projection
technique, Noor [2] established the equivalence between the extended general
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variational inequalities and the generalized nonlinear projection equation. Us-
ing this equivalent formulation, Noor discussed the existence of a solution of
the extended general variational inequalities under suitable conditions.

We now list some special cases of the extended general variational inequali-
ties. These also can be found in Noor [2].
I. If g = h, then problem (1.1) is equivalent to that of finding u ∈ H : g(u) ∈ K
such that

〈T (u), g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1.2)

which is known as general variational inequality, introduced in Noor [3].
II. For g ≡ I, the identity operator, the extended general variational inequality
(1.1) is equivalent to finding: u ∈ H : h(u) ∈ K such that

〈T (u), v − h(u)〉 ≥ 0,∀v ∈ K, (1.3)

which also called the general variational inequality; see Noor [4].
III. For h ≡ I, the identity operator, the extended general variational inequal-
ity (1.1) is equivalent to finding: u ∈ K such that

〈T (u), g(v)− u〉 ≥ 0,∀v ∈ H : g(v) ∈ K, (1.4)

which also called the general variational inequality; see Noor [5].
IV. For g = h = I, the identity operator, the extended general variational
inequality (1.1) is equivalent to finding: u ∈ K such that

〈T (u), v − u〉 ≥ 0,∀v ∈ K, (1.5)

which is known as the classical variational inequality and studied by Stampac-
chia [1] in 1964.

Noor [2] emphasizes that the problem (1.1) is equivalent to that of finding
u ∈ H : h(u) ∈ K such that

〈Tu+ h(u)− g(u), g(v)− h(u)〉 ≥ 0, ∀v ∈ H, g(v) ∈ K. (1.6)

We now recall the following well-known results and concepts.

Lemma 1.1. For given z ∈ H,u ∈ K satisfies the inequality

〈u− z, v − u〉 ≥ 0,∀v ∈ K, (1.7)

if and only if

u = PK(z)

where PK is the projection of H onto K. Also the projection operator PK is
nonexpansive.

Using Lemma 1.1, we can show that the extended general variational in-
equality (1.6) is equivalent to the fixed point problem. This result is mainly
due to Noor [2].
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Lemma 1.2. The function u ∈ H : h(u) ∈ K is a solution of the extended
general variational inequality (1.6) if and only if u ∈ H : h(u) ∈ K satisfies
the relation

h(u) = PK [g(u)− ρTu], (1.8)
where PK is the projection operator and ρ > 0 is a constant.

It is clear from the Lemma 1.2 that the extended general variational in-
equality (1.6) and the fixed point problem (1.8) are equivalent. This alterna-
tive equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems.

It is convenient to rewrite the relation (1.8) in the following form which is
very useful in obtaining our results:

u = u− h(u) + PK [g(u)− ρTu]. (1.9)

Let S : K → K be a nonexpansive mapping, i.e., if ‖Sx − Sy‖ ≤ ‖x −
y‖,∀x, y ∈ K. We denote the set of the fixed points of S by F (S) and the
set of the solutions of the extended general variational inequalities (1.6) by
EGV I(K,T, g, h). If u ∈ F (S) ∩ EGV I(K,T, g, h), from the Lemma 1.2, it
follows that

u = Su = u− h(u) + PK [g(u)− ρTu]
= Su− h(u) + PK [g(u)− ρTu],

where ρ > 0 is a constant.
The fixed point formulation is used to suggest the following three-step iter-

ative method for finding a common element of two different sets of the fixed
points of the nonexpansive mappings and the extended general variational in-
equalities.

Algorithm 1.1. For a given x0 ∈ H, compute the approximate solution xn
by the iterative schemes

zn = (1− γn)xn + γnS{xn − h(xn) + PK [g(xn)− ρTxn]}, (1.10)

yn = (1− βn)xn + βnS{zn − h(zn) + PK [g(zn)− ρTzn]}, (1.11)
xn+1 = (1− αn)xn + αnS{yn − h(yn) + PK [g(yn)− ρTyn]}, (1.12)

where αn, βn, γn ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive mapping.
Algorithm 1.1 is a three-step predictor-corrector method. For S = I and g = h,
Algorithm 1.1 is essentially due to Noor [6].

For g = h, Algorithm 1.1 reduces to the following method, which is studied
by Noor [7].

Algorithm 1.2. For a given x0 ∈ H, compute the approximate solution xn
by the iterative schemes

zn = (1− γn)xn + γnS{xn − g(xn) + PK [g(xn)− ρTxn]},
yn = (1− βn)xn + βnS{zn − g(zn) + PK [g(zn)− ρTzn]},

xn+1 = (1− αn)xn + αnS{yn − g(yn) + PK [g(yn)− ρTyn]},
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where αn, βn, γn ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive mapping.
For g = h = I, the identity operator, Algorithm 1.1 reduces to the following

methods, which is basically Noor and Huang [8].

Algorithm 1.3. For a given x0 ∈ H, compute the approximate solution xn
by the iterative schemes

zn = (1− γn)xn + γnSPK [xn − ρTxn],

yn = (1− βn)xn + βnSPK [zn − ρTzn],

xn+1 = (1− αn)xn + αnSPK [yn − ρTyn],

where αn, βn, γn ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive mapping.
Note that for γn = 0, Algorithm 1.1 reduce to:

Algorithm 1.4. For a given x0 ∈ H, compute the approximate solution xn
by the iterative schemes

yn = (1− βn)xn + βnS{xn − h(xn) + PK [g(xn)− ρTxn]},

xn+1 = (1− αn)xn + αnS{yn − h(yn) + PK [g(yn)− ρTyn]},
where αn, βn, γn ∈ [0, 1]. Algorithm 1.4 is also known as the two-step (Ishikawa
iterations) iterative method.

Algorithm 1.5. For given x0 ∈ K, the sequence {xn} is generated by the
following scheme:

xn+1 = (1− αn)xn + αnS{xn − h(xn) + PK [g(xn)− ρTxn]}.

In particular, three-step methods, Algorithm 1.1 is quite general and it includes
several new and previously known algorithms for solving variational inequalities
and nonexpansive mappings. It is well known fact three-step iterations are also
called Noor iterations, which has stimulated recent research activities in the
field of fixed point theory and related optimization problems. Clearly Noor
iterations include Mann (one-step) and Ishikawa (two-step) iterations as special
cases.

Definition 1. A mapping T : K → H is called µ-Lipschitzian if there exists a
constant µ > 0, such that

‖Tx− Ty‖ ≤ µ‖x− y‖,∀x, y ∈ K.

Definition 2. A mapping T : K → H is called r-strongly monotonic if there
exists a constant r > 0, such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2,∀x, y ∈ K.

Definition 3. A mapping T : K → H is called α-inverse strongly monotonic
if there exists a constant α > 0, such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2,∀x, y ∈ K.
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Definition 4. A mapping T : K → H is called relaxed (γ, r)-cocoercive if there
exist constants γ > 0, r > 0, such that

〈Tx− Ty, x− y〉 ≥ −γ‖Tx− Ty‖2 + r‖x− y‖2,∀x, y ∈ K.

2. Main results

In this section, we investigate the strong convergence of Algorithm 1.1 in
finding the common element of two sets of the solutions of the variational
inequalities EGV I(K,T, g, h) and F (S).

In order to prove our results we need the following Lemma:

Lemma 2.1. [10] Suppose {δk}∞k=0 is a nonnegative sequence satisfying the
following inequality:

δk+1 ≤ (1− λk)δn + σk, k ≥ 0

with λk ∈ [0, 1],
∑∞
k=0 λk =∞, and σk = o(λk). Then limk→∞ δk = 0.

Theorem 2.2. Let K be a closed convex subset of a real Hilbert space H. Let T
be a relaxed (γ, r) cocoercive and µ-Lipschitzian mapping of K into H. Let g be
a relaxed (γ1, r1) cocoercive and µ1-Lipschitzian mapping of K into H and h be
a relaxed (γ2, r2) cocoercive and µ2-Lipschitzian mapping of K into H. Let S be
a nonexpansive mapping of K into K such that F (S) ∩EGV I(K,T, g, h) 6= ∅.
Let xn be a sequence defined by algorithm 1.1, for any initial point x0 ∈ K ,
with conditions

|ρ− r − γµ2

µ2
| <

√
((r − γµ2)2 − µ2(k1 + k2)[2− (k1 + k2)]

µ2
, (2.1)

where

k1 =
√

1 + 2γ1µ2
1 − 2r1 + µ2

1,

k2 =
√

1 + 2γ2µ2
2 − 2r2 + µ2

2,

and k1 + k2 < 1. αn, βn, γn ∈ [0, 1] and
∑∞
n=1 αn =∞, then xn obtained from

Algorithm 1.1 converges strongly to x∗ ∈ F (S) ∩ EGV I(K,T, g, h).

Proof. Let x∗ ∈ F (S) ∩ EGV I(K,T, g, h). Then

x∗ = (1− γn)x∗ + γnS{x∗ − h(x∗) + PK [g(x∗)− ρTx∗]}
= (1− βn)x∗ + βnS{x∗ − h(x∗) + PK [g(x∗)− ρTx∗]}
= (1− αn)x∗ + αnS{x∗ − h(x∗) + PK [g(x∗)− ρTx∗]}.
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From the nonexpansive property of the projection PK and nonexpansive map-
ping S, we have

‖xn+1 − x∗‖ = ‖1− αn)xn + αnS{yn − g(yn) + PK [g(yn)− ρTyn]} −
(1− αn)x∗ − αnS{x∗ − h(x∗) + PK [g(x∗)− ρTx∗]}‖

≤ (1− αn)‖xn − x∗‖+ αn‖yn − h(yn)− x∗ + h(x∗)‖
+αn‖g(yn)− ρTyn − g(x∗) + ρTx∗‖

≤ (1− αn)‖xn − x∗‖+ αn‖yn − h(yn)− x∗ + h(x∗)‖
+αn‖g(yn)− g(x∗)− yn + x∗‖
+αn‖yn − x∗ − ρTyn + ρTx∗‖. (2.2)

From the relaxed (γ, r)-cocoercive and µ-Lipschitzian definition on T ,

‖yn − x∗ − ρ(Txn − Tx∗)‖2

= ‖yn − x∗‖2 − 2ρ〈Tyn − Tx∗, xn − x∗〉+ ρ‖Tyn − Tx∗‖2

≤ ‖yn − x∗‖2 − 2ρ[−γ‖Tyn − Tx∗‖2 + r‖yn − x∗‖2] + ρ2‖Tyn − Tx∗‖
≤ [1 + 2ργµ2 − 2ρr + ρ2µ2]‖yn − x∗‖2

= θ21‖yn − x∗‖2, (2.3)

where θ1 =
√

1 + 2ργµ2 − 2ρr + ρ2µ2.
In similar way, using the relaxed (γ1, r1)-cocoercivity and µ1- lipschitzian of

the operator g, and the relaxed (γ2, r2)-cocoercivity and µ2- lipschitzian of the
operator h, we have

‖yn− x∗− [g(yn)− g(x∗)]‖ ≤
√

1 + 2γ1µ2
1 − 2r1 + µ2

1‖yn− x∗‖ = k1‖yn− x∗‖.
(2.4)

‖yn−x∗− [h(yn)−h(x∗)]‖ ≤
√

1 + 2γ2µ2
2 − 2r2 + µ2

2‖yn−x∗‖ = k2‖yn−x∗‖.
(2.5)

From (2.2)-(2.5), we have

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ‖yn − x∗‖, (2.6)

where θ = k1 + k2 + θ1. From (2.1), we have θ < 1.

‖yn − x∗‖ ≤ (1− βn)‖xn − x∗‖+ βn‖S{zn − h(zn) + PK [g(zn)− ρTzn]}
−S{x∗ − h(x∗) + PK [g(x∗)− ρTx∗]}‖

≤ (1− βn)‖xn − x∗‖+ βn‖zn − x∗ − ρ(Tzn − Tx∗)‖
+βn‖zn − h(zn)− x∗ + h(x∗)‖+ βn‖g(zn)− g(x∗)− zn + x∗‖,
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from the relaxed (γ, r)-cocoercive and µ-Lipschitzian definition on T ,

‖zn − x∗ − ρ(Tzn − Tx∗)‖2

= ‖zn − x∗‖2 − 2ρ〈Tzn − Tx∗, zn − x∗〉+ ρ‖Tzn − Tx∗‖2

≤ ‖zn − x∗‖2 − 2ρ[−γ‖Tzn − Tx∗‖2 + r‖zn − x∗‖2] + ρ2‖Tzn − Tx∗‖
≤ [1 + 2ργµ2 − 2ρr + ρ2µ2]‖zn − x∗‖2

= θ21‖zn − x∗‖2.

In similar way, using the relaxed (γ1, r1)-cocoercivity and µ1-Lipschitzian of
the operator g, and the relaxed (γ2, r2)-cocoercivity and µ2-Lipschitzian of the
operator h, we have

‖zn − x∗ − [g(zn)− g(x∗)]‖ ≤
√

1 + 2γ1µ2
1 − 2r1 + µ2

1‖zn − x∗‖ = k1‖zn − x∗‖.

‖zn− x∗− [h(zn)− h(x∗)]‖ ≤
√

1 + 2γ2µ2
2 − 2r2 + µ2

2‖zn− x∗‖ = k2‖zn− x∗‖.
Therefore, we have

‖yn − x∗‖ ≤ (1− βn)‖xn − x∗‖+ βnθ‖zn − x∗‖, (2.7)

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γnθ‖xn − x∗‖
= (1− γn(1− θ))‖xn − x∗‖
≤ ‖xn − x∗‖. (2.8)

From (2,7),(2,8), we have

‖yn − x∗‖ ≤ (1− βn(1− θ))‖xn − x∗‖ ≤ ‖xn − x∗‖. (2.9)

From(2.6),(2.9), we obtain that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ‖yn − x∗‖
≤ (1− αn)‖xn − x∗‖+ αnθ‖xn − x∗‖
= (1− αn(1− θ))‖xn − x∗‖,

and hence by Lemma 2.1, limn→∞ ‖xn − x∗‖ = 0, i.e., xn → x∗. �

Remark 1. For g = h, Theorem 2.2 reduce to Theorem 3.1 of Noor [7]; for
g = h = I, the identity operator, Theorem 2.2 reduces to a result of Noor and
Huang [8] for the variational inequalities and nonexpansive mappings.

Next we will prove the strongly convergence theorem of Algorithm 1.5 under
the α-inverse strongly monotonicity (see[9]). With the following result, we ex-
tend Theorem 3.3 of [7] from the general variational inequality to the extended
general variational inequality, while we also extend the result of [9].

Theorem 2.3. Let K be a closed convex subset of a real Hilbert space H, and
α > 0 and α1 > 0, α2 > 0. Let T be an α-inverse strongly monotone mapping
of K into H. Let g be an α1-inverse strongly monotone mapping of K into
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H and h be an α2-inverse strongly monotone mapping of K into H, S be a
nonexpansive mapping of K into K such that F (S) ∩GV I(K,T, g, h) 6= ∅. If

|1− α1|+ |1− α2| < α, (2.9)

|ρ− α| ≤ |α[1− (v1 + v2)], (2.10)

where

v1 =
|1− α1|
α1

, v2 =
|1− α2|
α2

,

then the approximation solution obtained from Algorithm 1.5 converges strongly
to x∗ ∈ F (S) ∩GV I(K,T, g, h).

Proof. It is well known that if T is α-inverse strongly monotonic with the
constant α, then T is 1

α -Lipschitzian continuous (see [9]). For x∗ ∈ F (S) ∩
GV I(K,T, g, h), we have

‖xn − x∗ − ρ(Txn − Tx∗)‖2

= ‖xn − x∗‖2 + ρ2‖Txn − Tx∗‖ − 2ρ〈Txn − Tx∗, xn − x∗〉
≤ ‖xn − x∗‖2 + ρ2‖Txn − Tx∗‖ − 2ρ‖Txn − Tx∗‖2

≤
(

1 +
ρ2 − 2ρα

α2

)
‖xn − x∗‖2.

So we have

‖xn − x∗ − ρ(Txn − Tx∗)‖ ≤
|ρ− α|
α
‖xn − x∗‖. (2.11)

In similar way, using the α1-inverse strongly monotonicity of g and the α2-
inverse strongly monotonicity of h, we have

‖xn − x∗ − g(xn) + g(x∗)‖ ≤ v1‖xn − x∗‖, (2.12)

‖xn − x∗ − h(xn) + h(x∗)‖ ≤ v2‖xn − x∗‖, (2.13)

where v1 = |1−α1|
α1

, v2 = |1−α2|
α2

. From Algorithm 1.5, (2.11), (2.12) and (2.13),
we have

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αn‖S{xn − h(xn) + PK(g(xn)− ρTxn)}
−S{x∗ − h(x∗) + PK(g(x∗)− ρTx∗)}‖

≤ (1− αn)‖xn − x∗‖+ αn‖xn − x∗ − ρ(Txn − Tx∗)‖
+αn‖xn − x∗ − g(xn) + g(x∗)‖
+αn‖xn − x∗ − h(xn) + h(x∗)‖

≤ (1− αn)‖xn − x∗‖+ αn

(
|ρ− α|
α

+ v1 + v2

)
‖xn − x∗‖

=
{

1− αn
[
1−

(
|ρ− α|
α

+ v1 + v2

)]}
‖xn − x∗‖

= [1− αn(1− v)]‖xn − x∗‖,
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where v = 1 −
(
|ρ−α|
α + v1 + v2

)
, from (2.9)and (2.10), it follows that θ < 1.

Using Lemma 2.1, we have limn→∞ ‖xn − x∗‖ = 0, i.e., xn → x∗. �
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