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Abstract
For estimating the mean of a finite population, three classes of estimators using multi-auxiliary information

with unknown means using two phase sampling in presence of non-response have been proposed with their
properties. Asymptotically optimum estimator(AOE) in each class has been identified along with their mean
squared error formulae. An empirical study is also given.
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1. Introduction

In survey sampling, it is well established that the use of auxiliary information results in substantial
gain in efficiency over the estimators which do not use such information. Out of many ratio, product
and regression methods of estimation are good examples in this context. When the correlation between
the study variate y and the auxiliary variate x is positive (high) the ratio method of estimation is quite
effective. On the other hand if this correlation is negative (high) the product method of estimation
envisaged by Robson (1957) and rediscovered by Murthy (1964), can be employed. In large-scale
sample surveys, we often collect data on more than one auxiliary character and some of these may
be correlated with y. Estimators using information of the known population mean of an auxiliary
variable have generalized to the cases when such information is available for more than one auxiliary
variables by several authors as Olkin (1958), Raj (1965), Rao and Mudholkar (1967), Singh (1967),
Srivastava (1971) and Mohanty and Pattanaik (1982) and Agrawal and Panda (1993) etc. But in
many situations of practical importance it has been observed that the population means of auxiliary
variables are not known. So we use two-phase sampling scheme for estimating the population means
of auxiliary variables. Srivastava (1981) suggested a class of estimators for estimating the population
mean in two-phase sampling assuming that responses for all variables are available for each unit
selected in the sample. But in practice, the problem of non-response often arises in sample surveys.
In such situations for single variable survey, the problem of estimating the population mean using
sub-sampling scheme has been first considered by Hansen and Hurwitz (1946). Further improvement
in the estimation procedure for population mean in presence of non-response using auxiliary variable
was considered by Cochran (1977, p.374), Rao (1986, 1987), Sarndal et al. (1992, p.583), Khare and
Srivastava (1993, 1995, 1997), Okafor (1996), Tabasum and Khan (2004, 2006), Khare and Sinha
(2004, 2007), Singh and Kumar (2008a, b; 2009a, b) and Singh et al. (2010).
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In this paper we have suggested three classes of estimators for estimating the population mean
of the study variate using multi-auxiliary information with unknown population means using two-
phase sampling in presence of non-response. The expressions for bias and mean squared errors of
the suggested classes of estimators have been derived. The conditions for attaining minimum mean
squared errors of the proposed classes have also been investigated. An empirical study is given in
support of the present study.

2. Sampling Procedure and Notations

Consider a finite population U = (U1,U2, . . . ,UN) of N units. Let y denote the study character whose
population mean Ȳ is to be estimated using information on p auxiliary variates x1, x2, . . . , xp. Let
y j, x1 j, x2 j, . . . , xp j denote the values of the variates y, x1, x2, . . . , xp respectively, on the jth unit U j

of the population U, j = 1, 2, . . . ,N. When the population means X̄1, X̄2, . . . , X̄p of the auxiliary
variates x1, x2, . . . , xp respectively are known several multivariate ratio and product estimators of the
population mean Ȳ have been formulated along with their properties for instance see Olkin (1958), Raj
(1965), Rao and Mudholkar (1967), Singh (1967), Srivastava (1971), Mohanty and Pattanaik (1982)
and Agarwal and Panda (1993). The population is supposed to be divided in N1 responding and N2
non-responding units such that N1+N2 = N. However, in certain practical situations population means
X̄1, X̄2, . . . , X̄p of auxiliary variates x1, x2, . . . , xp respectively are not known a priori in which case the
technique of two-phase (or double) sampling can be useful. In two-phase sampling a first phase sample
of size n′ is drawn from the population by simple random sampling without replacement(SRSWOR)
scheme on which only the auxiliary variates are measured in order to furnish the good estimates
of X̄1, X̄2, . . . , X̄p. A smaller second phase sample of size n(< n′) is selected from n′ by simple
random sampling without replacement(SRSWOR) and the study variate y is measured on it. Let
(x̄′1, x̄

′
2, . . . , x̄′p) be the sample mean of the auxiliary variates x1, x2, . . . , xp respectively based on first

phase sample of size n′. Further let ȳ and (x̄1, x̄2, . . . , x̄p) be the sample means of the study variate y
and auxiliary variates x1, x2, . . . , xp obtained from the second phase sample of size n when there is no
non-response (i.e. complete response) in the second phase sample. In such situations the formulation
of two-phase (or double) sampling multivariate ratio and product estimators can be done easily just
replacing X̄1, X̄2, . . . , X̄p by (x̄′1, x̄

′
2, . . . , x̄′p), see Srivastava (1981). If, however, there is non-response

in the second phase sample, take a sub-sample of the non-respondents and re-contact them.
We assume that at the first phase, all the n′ units supply information on the auxiliary variates

x1, x2, . . . , xp. From the second phase sample of n units, let n1 units supply information on the study
variate y and n2 units refuse to respond. From the n2 non-respondents, using Hansen and Hurwitz
(1946) procedure we again select a sub sample of size m = n2/k, (k > 1) units using SRSWOR
assuming all the m units respond. Here we have (n1 + m) responding units on the study variate y and
consequently the estimator for population mean Ȳ using sub sampling scheme envisaged by Hansen
and Hurwitz (1946) is defined by

ȳ∗ =
(n1

n

)
ȳ(1) +

(n2

n

)
ȳ(2), (2.1)

where ȳ(1) and ȳ(2) denote the sample means of the study variate y based on n1 and m units respectively.
It is well known that the estimator ȳ∗ is unbiased estimator of the population mean Ȳ and has the
variance

Var(ȳ∗) =
(

1 − f
n

)
S 2

0 +
W2(k − 1)

n
S 2

0(2), (2.2)
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where f = n/N, Wi = Ni/N, (i = 1, 2), S 2
0 and S 2

0(2) are the population mean square of the variate y
for the entire population and for non-responding group of the population. Similarly for estimating the
population mean X̄i of the auxiliary variate xi (i = 1, 2, . . . , p), the unbiased estimator x̄∗i is given by

x̄∗i =
(n1

n

)
x̄i(1) +

(n2

n

)
x̄i(2), i = 1, 2, . . . , p, (2.3)

where x̄i(1) and x̄i(2) are the sample means of the auxiliary variate xi (i = 1, 2, . . . , p) based on n1 and
m units respectively. The variance of x̄∗i is given by

Var(x̄∗) =
(

1 − f
n

)
S 2

i +
W2(k − 1)

n
S 2

i(2), i = 1, 2, . . . , p, (2.4)

where S 2
i and S 2

i(2) are the population mean square of xi (i = 1, 2, . . . , p) for the entire population and
non responding group of the population.

Now we define

C0 =
S 0

Ȳ
, Ci =

S i

X̄i
, i = 1, 2, . . . , p, C0(2) =

S 0(2)

Ȳ
, Ci(2) =

S i(2)

X̄i
, ρ0i =

S 0i

S 0S i
,

S 0i =
1

N − 1

N∑
j=1

(
y j − Ȳ

) (
xi j − X̄i

)
, ρ0i(2) =

S 0i(2)

S 0(2)S i(2)
, Ȳ(2) =

1
N2

N2∑
j=1

yi j,

S 0i(2) =
1

N2 − 1

N2∑
j=1

(
y j − Ȳ(2)

) (
xi j − X̄i(2)

)
, X̄i(2) =

1
N2

N2∑
j=1

xi j, β0i =
S 0i

S 2
i

, i = 1, 2, . . . , p,

β0i(2) =
S 0i(2)

S 2
i(2)

, i = 1, 2, . . . , p, ρil =
S il

S iS l
, ρil(2) =

S il(2)

S i(2)S l(2)
, (i , l = 1, 2, . . . , p), R =

Ȳ
X̄
.

Let

ui =
x̄∗i
x̄′i
, i = 1, 2, . . . , p;

=
x̄i−p

x̄′i−p
, i = p + 1, p + 2, . . . , 2p.

Let u denote the column vector of 2p elements u1, u2, . . . , u2p. Super fix T over a column vector
denotes the corresponding row vector.

ε0 =
ȳ∗ − Ȳ

Ȳ
, η∗i =

x̄∗i − X̄i

X̄i
, η′i =

x̄′i − X̄i

X̄i
, ηi−p =

x̄i−p − X̄i

X̄i
, η′i−p =

x̄′i−p − X̄i

X̄i
,

δi = ui − 1 =
(
ηi−p − η′i−p

)
+

(
η′2i−p − ηi−pη

′
i−p

)
+ · · · , i = p + 1, p + 2, . . . , 2p,

E(ε0) = 0, E(δi) = 0 ∀ i = 1, 2, . . . , 2p,

E (ε0δi) =
{(

1
n
− 1

n′

)
qi +

W2(k − 1)
n

qi(2)

}
= −ai, i = 1, 2, . . . , p,

=

(
1
n
− 1

n′

)
qi = gi, i = p + 1, p + 2, . . . , 2p,
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qi = ρ0iC0Ci, qi(2) = ρ0i(2)C0(2)Ci(2), i = 1, 2, . . . , p,

E (δiδl) =
{(

1
n
− 1

n′

)
ail +

W2(k − 1)
n

ail(2)

}
= eil;

=

(
1
n
− 1

n′

)
ail; (i = 1, 2, . . . , 2p; l = p + 1, p + 2, . . . , 2p);

ail = ρilCiCl; ail(2) = ρil(2)Ci(2)Cl(2), (i, l) = 1, 2, . . . , p; {ρ0i, ρil, (i, l) = 1, 2, . . . , p} and {ρ0i(2), ρil(2),
(i, l) = 1, 2, . . . , p} are the correlation coefficients between (y, xi) and (xi, xl) respectively for the entire
population and for the non-responding group of the population. Putting the above results in matrix
notations, we have

E
(
ε0δ

T
)
= bT , E

(
δδT

)
= D =

[
E F

FT T

]
, E = F + F(2), F =

(
1
n
− 1

n′

)
a = ( fil)p×p;

F =
W2(k − 1)

n
a(2) = ( fil(2))p×p; a = (ail)p×p; a(2) = (ail(2))p×p; fil =

(
1
n
− 1

n′

)
ail;

fil(2) =
W2(k − 1)

n
ail(2); bT =

(
QT : gT

)
=

(
Q1,Q2, . . . ,Qp, g1, g2, . . . , gp

)
,

QT =

{(
1
n
− 1

n′

)
qT +

W2(k − 1)
n

qT
(2)

}
, Qi =

{(
1
n
− 1

n′

)
qi +

W2(k − 1)
n

qi(2)

}
, i = 1, 2, . . . , p,

qT =
(
q1, q2, . . . , qp

)
, qT

(2) =
(
q1(2), q2(2), . . . , qp(2)

)
, gT =

(
1
n
− 1

n′

)
qT , gT

(2) =
W2(k − 1)

n
qT

(2),

QT =
(
gT + gT

(2)

)
, E

(
ε0φ

T
)
= QT , E

(
φφT

)
= Ep×p, Q =

(
1
n
− 1

n′

)
q +

W2(k − 1)
n

q(2),

e11 =

(
1
n
− 1

n′

)
C2

1 +
W2(k − 1)

n
C2

1(2), e22 =

(
1
n
− 1

n′

)
C2

2 +
W2(k − 1)

n
C2

2(2)

e12 =

(
1
n
− 1

n′

)
a12 +

W2(k − 1)
n

a12(2), E∗ =
(

1 − f
n

)
a +

W2(k − 1)
n

a(2) =
(
e∗il

)
p×p

,

F∗ =
(

f ∗il
)

p×p
, f ∗il =

(
1 − f

n

)
ail, e∗il = f ∗il + f ∗il(2), (i, l) = 1, 2, . . . , p,

Q∗ =
(

1 − f
n

)
q +

W2(k − 1)
n

q(2), Q∗i =
(

1 − f
n

)
qi +

W2(k − 1)
n

qi(2), (i = 1, 2, . . . , p),

e∗11 =

(
1 − f

n

)
C2

1 +
W2(k − 1)

n
C2

1(2), e∗22 =

(
1 − f

n

)
C2

2 +
W2(k − 1)

n
C2

2(2),

e∗12 =

(
1 − f

n

)
ρ12C1C2 +

W2(k − 1)
n

ρ12(2)C1(2)C2(2), D∗ =
[

E∗ F∗

F∗T F∗

]
,

b∗T =
(
Q∗T : g∗T

)
=

(
Q∗1,Q

∗
2, . . . ,Q

∗
p, g
∗
1, g
∗
2, . . . , g

∗
p

)
, g∗T =

(
1 − f

n

)
qT ,

Q∗T =
(

1 − f
n

)
qT +

W2(k − 1)
n

qT
(2), d = ρ01

(
C0

C1

)
, d(2) = ρ01(2)

(
C0(2)

C1(2)

)
,

d01(2) =

(
ρ01(2) − ρ02(2)ρ12(2)

)
C0(2)(

1 − ρ2
12(2)

)
C1(2)

, d02(2) =

(
ρ02(2) − ρ01(2)ρ12(2)

)
C0(2)(

1 − ρ2
12(2)

)
C2(2)
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d01 =
(ρ01 − ρ02ρ12) C0(

1 − ρ2
12

)
C1

and d02 =
(ρ02 − ρ01ρ12) C0(

1 − ρ2
12

)
C2

.

The matrix D is assumed to be positive definite. The matrices E = (eil)p×p, F = ( fil)p×p and F(2) =

( fil(2))p×p are p × p matrices.
In the following sections, utilizing the information an p(> 1) auxiliary variates. We will define

different estimators for Ȳ in different situations and study their properties.

3. The Suggested Classes of Estimators

3.1. Strategy-I

Population means X̄1, X̄2, . . . , X̄p of the auxiliary variates x1, x2, . . . , xp are not known, incomplete
information on the study variate y and auxiliary variate x.

In this situation we use (n1 + m) responding units for y and x from the sample of size n and x̄′i to
estimate X̄i, (i = 1, 2, . . . , p). Let vT = (v1, v2, . . . , vp), vi = x̄∗i /x̄′i , i = 1, 2, . . . , p and eT denotes the
row vector of p unit elements. Whatever be the sample selected, let vT assume values in a bounded
closed convex subset J of the (p + 1) dimensional real space containing the point eT . Let A(ȳ∗, vT ) be
a function of (ȳ∗, vT ) such that it satisfies the following conditions:

(i) In J, the function A(ȳ∗, vT ) is continuous and bounded.

(ii) The first and second order partial derivatives of A(ȳ∗, vT ) exist and are continuous and bounded
in J.

We propose a class of estimators for the population mean Ȳ as

M̂1 = A
(
ȳ∗, vT

)
, (3.1)

where A(ȳ∗, vT ) is the function of (ȳ∗, vT ) such that

A
(
Ȳ , eT

)
= Ȳ , for all Ȳ . (3.2)

Since there are only a finite number of samples, the expectations and mean squared error of the
class of estimators M̂1 exist under the conditions 1 and 2.

Expanding A(ȳ∗, vT ) about the point vT = eT by a second order Taylor’s series, we obtain

M̂1 = A
(
Ȳ , eT

)
+

(
ȳ∗ − Ȳ

) ∂A(·)
∂ȳ∗

∣∣∣∣∣∣(Ȳ ,eT )
+ (v − e)T A(1)

(
Ȳ , eT

)
+

1
2

(ȳ∗ − Ȳ
)2 ∂2A(·)

∂ȳ∗2

∣∣∣∣∣∣(ȳ∗∗,v∗T )

+2
(
ȳ∗ − Ȳ

)
(v − e)T ∂A(1)(·)

∂ȳ∗

∣∣∣∣∣∣(ȳ∗∗,v∗T )
+ (v − e)T A(2)

(
ȳ∗∗, v∗T

)
(v − e)

 , (3.3)

where ȳ∗∗ = Ȳ + θ(ȳ∗ − Ȳ), v∗T = eT + θ(v − e)T , 0 < θ < 1 and A(1)(Ȳ , eT ) denotes the p elements
vector of first partial derivatives of A(ȳ∗, vT ) with respect to v about the point vT = eT and A(2)(ȳ∗∗, v∗T )
denotes 2p × 2p matrix of the second partial derivatives of A(ȳ∗, vT ) with respect to v about the point
vT = v∗T . Taking expectation in (3.3) and noting that

E(ε0) = E
(
η∗i

)
= E

(
η′i

)
= 0, i = 1, 2, . . . , p
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and that the expectations of the second degree terms are of order n−1, we obtain

E
(
M̂1

)
= Ȳ + o

(
n−1

)
.

Thus the bias of the estimator M̂1 is of the order n−1 and hence its contribution to the mean square
error will be of the order n−2.

Noting that

A
(
Ȳ , eT

)
= Ȳ , for all Ȳ ⇒ ∂A(·)

∂ȳ∗

∣∣∣∣∣∣(Ȳ ,eT )
= 1.

Thus from (3.3) we have

M̂1 ≈ Ȳ +
(
ȳ∗ − Ȳ

)
+ (v − e)T A(1)

(
Ȳ , eT

)
or

(
M̂1 − Ȳ

)
= Ȳε0 + ϕ

T A(1)
(
Ȳ , eT

)
, (3.4)

where ϕT = (v − e)T .
Squaring both sides of (3.4) we have(

M̂1 − Ȳ
)2
=

[
Ȳ2ε2

0 + 2Ȳε0ϕ
T A(1)

(
Ȳ , eT

)
+

{
A(1)

(
Ȳ , eT

)}T
ϕϕT A(1)

(
Ȳ , eT

)]
. (3.5)

We note that

E
(
ε0ϕ

T
)
= QT and E

(
ϕϕT

)
= Ep×p. (3.6)

Taking expectations of both sides in (3.5) and using (3.6) we get the MSE of M̂1 to the first degree of
approximation as

MSE
(
M̂1

)
=

[(
1− f

n

)
S 2

0 +
W2(k−1)

n
S 2

0(2) + 2ȲQT A(1)
(
Ȳ , eT

)
+

{
A(1)

(
Ȳ , eT

)}T
E

{
A(1)

(
Ȳ , eT

)}]
. (3.7)

The MSE of M̂1 is minimized for

A(1)
(
Ȳ , eT

)
= −ȲE−1Q. (3.8)

Thus, the resulting minimum MSE of M̂1 is given by

min MSE
(
M̂1

)
= Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) − QT E−1Q
}
. (3.9)

Now we state the following theorem.

Theorem 1. To the first degree of approximation

MSE
(
M̂1

)
≥ Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) − QT E−1Q
}

with equality holding if

A(1)
(
Ȳ , eT

)
= −ȲE−1Q.
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The class of estimators (3.1) is very vast, if the parameters in the function A(ȳ∗, vT ) are so selected
that they satisfy (3.8), the resulting estimator will have MSE given by (3.9). A few examples are:

M̂1(1) = ȳ∗ + ψT (v − e), M̂1(2) = ȳ∗ exp
(
ψT log v

)
, M̂1(3) = ȳ∗

{
1 + ψT (v − e)

}
M̂1(4) =

ȳ∗

1 − ψT (v − e)
, M̂1(5) = ȳ∗

p∏
i=1

viψi, M̂1(6) =
ȳ∗2

ȳ∗ − ψT (v − e)
,

where ψT = (ψ1, ψ2, . . . , ψp) is vector of p constants. The optimum values of these constants are
obtained from the conditions (3.8). Since (3.8) contains p equations, we have taken exactly p unknown
constants in defining above estimators of the class.

Remark 1. For the case of a single auxiliary variable x1, the MSE of M̂1 defined at (3.7) is mini-
mized for

A(1)
(
Ȳ , 1

)
= −Ȳ

(
Q1

e11

)
and the minimum MSE of M̂1 is given by

min MSE
(
M̂1

)
I
= Ȳ2

(1 − f
n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
Q2

1

e11

 . (3.10)

which equals to the Variance of the optimum estimator

M̂1β = ȳ∗ + β∗
(
x̄′1 − x̄∗1

)
(3.11)

in the class of estimators

M̂1d = ȳ∗ + d
(
x̄′1 − x̄∗1

)
where d is suitably chosen constant and

β∗ =
Q1

e11
.

Remark 2. In case of two auxiliary variables, the MSE of M̂1 defined at (3.7) is minimized for

 A(1)
1

(
Ȳ , 1, 1

)
A(1)

2

(
Ȳ , 1, 1

)  = Ȳ


e12Q2 − e22Q1

e11e22 − e2
12

e12Q1 − e11Q2

e11e22 − e2
12

 . (3.12)

Thus the resulting minimum MSE of M̂1 (with two auxiliary variates) is given by

min MSE
(
M̂1

)
II
= Ȳ2

(1 − f
n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
Q2

1e22 + Q2
2e11 − 2Q1Q2e12

e11e22 − e2
12

 (3.13)

which equals to the variance of the optimum estimator

M̂∗10 = ȳ∗ + β∗01
(
x̄′1 − x̄∗1

)
+ β∗02

(
x̄′2 − x̄∗2

)
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is the class of estimators

M̂∗1d1 = ȳ∗ + d1
(
x̄′1 − x̄∗1

)
+ d2

(
x̄′2 − x̄∗2

)
,

where β∗01 = (e12Q2 − e22Q1)/(e11e22 − e2
12) and β∗02 = (e12Q1 − e11Q2)/(e11e22 − e2

12) are the optimum
values of d1 and d2 respectively.

From (3.10) and (3.13) we have

min MSE
(
M̂1

)
I
−min MSE

(
M̂1

)
II
=

Ȳ2 (Q1e12 + Q2e11)2

e11

(
e11e22 − e2

12

) ≥ 0

which establishes that the proposed estimator M̂1 with two auxiliary variables is more efficient than
that with one auxiliary variable.

Remark 3. In case n′ = N i.e. the population means X̄1, X̄2, . . . , X̄p of the auxiliary variates
x1, x2, . . . , xp respectively are known, the class of estimators M̂1 defined by (3.1) reduces to:

M̂11 = A∗
(
ȳ∗, v∗T

)
, (3.14)

where v∗T = (v∗1, v
∗
2, . . . , v

∗
p), v∗i = x̄∗i /X̄i, i = 1, 2, . . . , p and A∗

(
ȳ∗, v∗T

)
is the function of

(
ȳ∗, v∗T

)
such

that A∗
(
Ȳ , eT )

= Ȳ for all Ȳ .
Putting n′ = N in (3.8) and (3.9) we get the optimum values of the derivatives and the minimum

MSE of M̂11 are respectively given by

A∗(1)
(
Ȳ , eT

)
= −ȲE∗−1Q∗ (3.15)

and

min MSE
(
M̂11

)
= Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) − Q∗T E∗−1Q∗
}
. (3.16)

Remark 4. For the case of a single auxiliary variable x1 with known population mean X̄1, the
expressions (3.15) and (3.16) respectively reduce to:

A(1)
(
Ȳ , 1

)
= −Ȳ

(
1 − f

n

)
ρ01C0C1 +

W2(k − 1)
n

ρ01(2)C0(2)C1(2)(
1 − f

n

)
C2

1 +
W2(k − 1)

n
C2

1(2)

(3.17)

and

min MSE
(
M̂11

)
I
= Ȳ2

(1 − f
n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
Q∗21

e∗11

 . (3.18)

It can be shown that the variance of the optimum estimator

M̂∗0 = ȳ∗ + β∗0
(
X̄1 − x̄∗1

)
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in the class of estimators

M̂∗1d = ȳ∗ + d∗
(
X̄1 − x̄∗1

)
is same as given by (3.18) i.e., Var(M̂∗0) = min MSE(M̂11), β∗0 = (Q∗1/e

∗
11) and d∗ is a suitably chosen

constant.

Remark 5. In case of two auxiliary variables with known population means X̄1 and X̄2, the expres-
sions (3.12) and (3.13) respectively reduce to:

 A∗(1)
1

(
Ȳ , 1, 1

)
A∗(2)

2

(
Ȳ , 1, 1

)  = Ȳ


e∗12Q∗2 − e∗22Q∗1

e∗11e∗22 − e∗212

e∗12Q∗1 − e∗11Q∗2
e∗11e∗22 − e∗212

 , (3.19)

min MSE
(
M̂11

)
II
= Ȳ2

(1 − f
n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
Q∗21 e∗22 + Q∗22 e∗11 − 2Q∗1Q∗2e∗12

e∗11e∗22 − e∗212

 , (3.20)

where A∗(1)
1 (Ȳ , 1, 1) = ∂A∗(·)/∂v∗1|(Ȳ ,1,1), A∗(1)

2 (Ȳ , 1, 1) = ∂A∗(·)/∂v∗2|(Ȳ ,1,1).
It is to be mentioned that the variance of the optimum estimator

M̂∗20 = ȳ∗ + β∗∗01

(
X̄1 − x̄∗1

)
+ β∗∗02

(
X̄2 − x̄∗2

)
in the class of estimators

M̂2d = ȳ∗ + d∗1
(
X̄1 − x̄∗1

)
+ d∗2

(
X̄2 − x̄∗2

)
is same as given by (3.20) and β∗∗01 = (e∗12Q∗2−e∗22Q∗1)/(e∗11e∗22−e∗212) and β∗∗02 = (e∗12Q∗1−e∗11Q∗2)/(e∗11e∗22−
e∗212).

From (3.18) and (3.20) we have

min MSE
(
M̂11

)
I
−min MSE

(
M̂11

)
II
=

Ȳ2
(
Q∗1e∗12 + Q∗2e∗11

)2

e∗11

(
e∗11e∗22 − e∗212

) ≥ 0 (3.21)

which shows that the proposed estimator M̂11 with two auxiliary variables is more efficient than M̂11
with one auxiliary variable.

3.2. Strategy-II

Population means X̄1, X̄2, . . . , X̄p of the auxiliary variates x1, x2, . . . , xp are unknown, incomplete in-
formation on the study variate y and complete information on the auxiliary variate x.

We consider the situation where information on (n1 + m) responding units on the study variate y
and complete information on the auxiliary variate from the sample of size n are available. Also the
population means X̄1, X̄2, . . . , X̄p are unknown. Let wT = (w1,w2, . . . ,wp), wi = x̄i/x̄′i , i = 1, 2, . . . , p
and eT denote the row vector of p unit elements. Whatever be the sample chosen, let wT assume
values in a bounded closed convex subset L of the (p+ 1) dimensional real space containing the point
eT . We define a class of estimators for Ȳ as

M̂2 = B
(
ȳ∗,wT

)
, (3.22)
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where B(ȳ∗,wT ) is the function of (ȳ∗,wT ) such that

B
(
Ȳ , eT

)
= Ȳ , for all Ȳ

B1

(
Ȳ , eT

)
=
∂B(·)
∂ȳ∗

∣∣∣∣∣∣(Ȳ ,eT )
= 1 (3.23)

and it also satisfies certain conditions similar to those given for M̂1 at (3.1).
Since there are only a finite number of samples, the expectations and mean squared error of the

class of estimator M̂2 exist. Expanding B(ȳ∗,wT ) about the point (Ȳ , eT ) in a second order Taylor’s
series, we have that E(M̂2) = Ȳ + o(n−1) and so the bias of M̂2 is of the order n−1 . The mean squared
error of M̂2 up to the terms of order n−1 is

MSE
(
M̂2

)
=

[(
1− f

n

)
S 2

0 +
W2(k−1)

n
S 2

0(2) + 2ȲgT B(1)
(
Ȳ , eT

)
+

{
B(1)

(
Ȳ , eT

)}T
F

{
B(1)

(
Ȳ , eT

)}]
(3.24)

=

[(
1− f

n

)
S 2

0 +
W2(k−1)

n
S 2

0(2) +

(
1
n
− 1

n′

){
2ȲqTB(1)

(
Ȳ , eT

)
+
{
B(1)

(
Ȳ , eT

)}T
a
{
B(1)

(
Ȳ , eT

)}}]
,

where B(1)(Ȳ , eT ) denotes the p elements column vector of first partial derivatives of B(ȳ∗,wT ) with
respect to w about the point wT = eT . The MSE of M̂2 is minimized for

B(1)
(
Ȳ , eT

)
= −Ȳa−1q (3.25)

and the resulting minimum MSE of M̂2 is given by

min MSE
(
M̂2

)
=

{(
1 − f

n

)
S 2

0 +
W2(k − 1)

n
S 2

0(2) − Ȳ2
(

1
n
− 1

n′

)
qT a−1q

}
=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.1,2,...,p

)
+

(
1
n′
− 1

N

)
S 2

0R2
0.1,2,...,p +

W2(k − 1)
n

S 2
0(2)

}
, (3.26)

where R2
0.1,2,...,p = (qT a−1q)/C2

0 denotes the square of the multiple correlation coefficient of y on
x1, x2, . . . , xp. Thus we state the following theorem

Theorem 2. To the first degree of approximation,

MSE
(
M̂2

)
≥

{(
1 − f

n

)
S 2

0

(
1 − R2

0.123···p
)
+

(
1
n′
− 1

N

)
S 2

0R2
0.123···p +

W2(k − 1)
n

S 2
0(2)

}
(3.27)

with equality holding if

B(1)
(
Ȳ , eT

)
= −Ȳa−1q.

Remark 6. The class of estimators M̂2 given by (3.22) is very large, if the parameters in the function
B(ȳ∗,wT ) are so chosen that they satisfy (3.25), the resulting estimator will have MSE given by (3.26).
A few examples are

M̂2(1) = ȳ∗ + µT (w − e), M̂2(2) =
ȳ∗2

ȳ∗ − µT (w − e)
,

M̂2(3) = ȳ∗ exp
(
µT log w

)
, M̂2(4) = ȳ∗

{
1 + µT (w − e)

}
, etc
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where µT = (µ1, µ2, . . . , µp) is vector of p scalars. The optimum values of these scalars are determined
from the condition (3.25). Since (3.25) involves p equations, we have taken exactly p unknown
constants in defining above estimators of the class.

Remark 7. For the case of a single auxiliary character x1, the MSE of M̂2 is minimized for

B(1)
(
Ȳ , 1

)
= −ȲK01 = −Ȳ

(
β

R

)
, (3.28)

where K01 = ρ01(C0/C1), β = (S 01/S 2
1) and R = (Ȳ/X̄).

Thus the minimum MSE of M̂2 is given by

min MSE
(
M̂2

)
=

{(
1 − f

n

)
S 2

0

(
1 − ρ2

01

)
+

(
1
n′
− 1

N

)
ρ2

01S 2
0 +

W2(k − 1)
n

S 2
0(2)

}
, (3.29)

which equals to the variance of the optimum estimator

M̂(1)
20 = ȳ∗ + β

(
x̄′1 − x̄1

)
is the class of estimators

M̂(1)
2d = ȳ∗ + d

(
x̄′1 − x̄1

)
,

where d is a suitably chosen scalars.

Remark 8. For the case of two auxiliary variates x1 and x2, the M̂2 of given by (3.24) is minimized
for  B(1)

1

(
Ȳ , 1, 1

)
B(1)

2

(
Ȳ , 1, 1

)  = −Ȳ
[

d01

d02

]
, (3.30)

where

B(1)
1

(
Ȳ , 1, 1

)
=
∂B(·)
∂w1

∣∣∣∣∣∣(Ȳ ,1,1)
, B(1)

2

(
Ȳ , 1, 1

)
=
∂B(·)
∂w2

∣∣∣∣∣∣(Ȳ ,1,1)
.

Thus the resulting minimum MSE of M̂2 is given by

min MSE
(
M̂2

)
=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12

)
+

(
1
n′
− 1

N

)
S 2

0R2
0.12 +

W2(k − 1)
n

S 2
0(2)

}
(3.31)

which equals to the variance of the optimum estimator

M̂(2)
20 = ȳ∗ + β01.2

(
x̄′1 − x̄1

)
+ β02.1

(
x̄′2 − x̄2

)
is the class of estimators

M̂(2)
2d = ȳ∗ + d1

(
x̄′1 − x̄1

)
+ d2

(
x̄′2 − x̄2

)
,

where R2
0.12 = (ρ2

01 + ρ
2
02 − 2ρ01ρ02ρ12)/(1− ρ2

12) is the multiple correlation coefficient of y on (x1, x2),
β01.2 = (β02β21 − β01)/(1 − β21β12), β02.1 = (β01β12 − β02)/(1 − β21β12) and d1 and d2 are suitably
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chosen constants, and (β01, β02, β21, β12) are the entire population regression coefficients of (y on x1, y
on x2, x2 on x1, x1 on x2) respectively.

From (3.29) and (3.31) it can be easily shown that the proposed estimator M̂2 with single auxiliary
variable is more efficient than M̂2 with two auxiliary variables.

Remark 9. In case n′ = N i.e. the population means X̄1, X̄2, . . . , X̄p of the auxiliary variates
x1, x2, . . . , xp respectively are known, the class of estimators M̂2 given by (3.22) boils down to

M̂22 = B∗
(
ȳ∗,w∗T

)
, (3.32)

where w∗T = (w∗1,w
∗
2, . . . ,w

∗
p), w∗i = x̄i/X̄i, i = 1, 2, . . . , p and B∗(ȳ∗,w∗T ) is the function of (ȳ∗,w∗T )

such that B∗(Ȳ , eT ) = Ȳ for all Ȳ .
Putting n′ = N in (3.25) and (3.26) we get the optimum values of the derivatives and the minimum

MSE of M̂22 are respectively given by

B∗(1)
(
Ȳ , eT

)
= −Ȳa−1q (3.33)

and

min MSE
(
M̂22

)
= Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
(

1 − f
n

)
qT a−1q

}
(3.34)

= Ȳ2
{(

1 − f
n

)
C2

0

(
1 − R2

0.12···p
)
+

W2(k − 1)
n

C2
0(2)

}
,

where B∗(1)(Ȳ , eT ) denotes the p elements column vector of first partial derivatives of B∗(ȳ∗,w∗T ) with
respect to w∗ about the point w∗T = eT .

Remark 10. For the case of a single auxiliary variable x, the MSE of M̂22 is minimized for

B∗(1)
1

(
Ȳ , 1

)
= −βX̄

and thus the resulting minimum MSE is

min MSE
(
M̂22

)
=

{(
1 − f

n

)
S 2

0

(
1 − ρ2

01

)
+

W2(k − 1)
n

S 2
0(2)

}
(3.35)

which equals to the variance of the optimum estimator

M̂(1)
220 = ȳ∗ + β

(
X̄1 − x̄1

)
in the class of estimators

M̂22d = ȳ∗ + d
(
X̄1 − x̄1

)
.

Remark 11. In case of two auxiliary variables (x1, x2), the MSE of M̂22 is minimized for B∗(1)
1

(
Ȳ , 1, 1

)
B∗(1)

2

(
Ȳ , 1, 1

)  = −Ȳ
[

d01

d02

]
. (3.36)
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Thus the resulting minimum MSE of M̂22 is given by

min MSE
(
M̂22

)
=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12

)
+

W2(k − 1)
n

S 2
0(2)

}
(3.37)

which equals to the variance of the optimum estimator

M̂(2)
220 = ȳ∗ + β01.2

(
X̄1 − x̄1

)
+ β02.1

(
X̄2 − x̄2

)
in the class of estimators

M̂22d = ȳ∗ + d1

(
X̄1 − x̄1

)
+ d2

(
X̄2 − x̄2

)
.

From (3.35) and (3.37) it can be shown that the proposed estimator M̂22 with two auxiliary variables
is better than M̂22 with single auxiliary variable.

3.3. Strategy-III

This strategy is same as that of strategy-II. The difference is made in the formulation of class of
estimators. We note that the class of estimators M̂2 at (3.22) utilizes information only on x̄i and x̄′i
(i = 1, 2, . . . , p). Here we argue that an unbiased estimator x̄∗i (i = 1, 2, . . . , p) can be also computed
based on the responding units for which ȳ∗ is computed. Thus information on x̄∗i (i = 1, 2, . . . , p)
can be used along with (ȳ∗, x̄i, x̄′i , i = 1, 2, . . . , p) in formulating the class of estimators. With this
background we define a class of estimators for the population mean Ȳ as

M̂3 = G
(
ȳ∗, uT

)
, (3.38)

where G(ȳ∗, uT ) is the function of (ȳ∗, uT ) such that

G
(
Ȳ , eT

)
= Ȳ , for all Ȳ (3.39)

⇒ G1

(
Ȳ , eT

)
=
∂G(·)
∂ȳ∗

∣∣∣∣∣∣(Ȳ ,eT )
= 1

and it also satisfies the certain conditions similar to those given for M̂1 at (3.1).
To obtain the mean squared error of M̂3, we expand the function G(ȳ∗, uT ) about the point (Ȳ , eT )

in a second order Taylor’s series. We obtain

M̂3 = G
(
Ȳ , eT

)
+

(
ȳ∗ − Ȳ

)
G(1)

(
Ȳ , eT

)
+ (u − e)T G(1)

(
Ȳ , eT

)
+

1
2

(ȳ∗ − Ȳ
)2 ∂2G(·)

∂ȳ∗2

∣∣∣∣∣∣(ȳ∗∗,u∗T )

+ 2
(
ȳ∗ − Ȳ

)
(u − e)T ∂G(1)(·)

∂ȳ∗

∣∣∣∣∣∣(ȳ∗∗,u∗T )
+ (u − e)T G(2)

(
ȳ∗∗, u∗T

)
(u − e)

 ,
where u∗ = e + θ(u − e), 0 < θ < 1, G(1)(Ȳ , eT ) denotes the 2p elements column vector of the first
partial derivatives of G(ȳ∗, uT ) and G(2)

(
Ȳ , eT

)
denotes the 2p×2p matrix of second partial derivatives

of G(ȳ∗, uT ) with respect to u. Substituting for ȳ∗ and u in terms of ε0 and δ and using (3.16) we obtain

M̂3 = Ȳ + Ȳε0 + δ
T G(1)

(
Ȳ , eT

)
+

1
2

Ȳ2ε2
0
∂2G(·)
∂ȳ∗2

∣∣∣∣∣∣(ȳ∗∗,u∗T )
+ 2Ȳε0δ

T ∂G(1)(·)
∂ȳ∗

∣∣∣∣∣∣(ȳ∗∗,u∗T )
+ δT G(2)

(
ȳ∗∗, u∗T

)
δ

 . (3.40)
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Taking expectation in (3.40) and noting that second partial derivatives are bounded, we have

E
(
M̂3

)
= Ȳ + o

(
n−1

)
and thus the bias of M̂3 is of order n−1.

From (3.40), we have up to terms of order n−1,

min MSE
(
M̂3

)
= E

(
M̂3 − Ȳ

)2
= E

{
Ȳε0 + δ

T G(1)
(
Ȳ , eT

)}2
(3.41)

=

[
Ȳ2

{(
1− f

n

)
C2

0 +
W2(k−1)

n
C2

0(2)

}
+ 2ȲbT G(1)

(
Ȳ , eT

)
+

{
G(1)

(
Ȳ , eT

)}T
D

{
G(1)

(
Ȳ , eT

)}]
which is minimum when

G(1)
(
Ȳ , eT

)
= −ȲD−1b. (3.42)

Thus the resulting minimum MSE of M̂3 is given by

min MSE
(
M̂3

)
= Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) − bT D−1b
}

(3.43)

we note that

bT D−1b = gT F−1g + gT
(2)F

−1
(2)g(2) =

(
1
n
− 1

n′

)
qT a−1q +

W2(k − 1)
n

qT
(2)a
−1
(2)q(2). (3.44)

Using (3.43) in (3.41) we write the minimum MSE of M̂3 as

min MSE
(
M̂3

)
= Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) −
(

1
n
− 1

n′

)
qT a−1q − W2(k − 1)

n
qT

(2)a
−1
(2)q(2)

}
=

{(
1− f

n

)
S 2

0

(
1−R2

0.12···p
)
+

(
1
n′
− 1

N

)
S 2

0R2
0.12···p +

W2(k − 1)
n

(
1−R2

(2)0.12···p
)}
, (3.45)

where R2
(2)0.1,2,...,p = qT

(2)a
−1
(2)q(2)/C2

0(2) is the square of the multiple correlation coefficient of y on x1, x2,
. . . , xp of non-responding group in the population. Now we state the following theorem.

Theorem 3. To the first degree of approximation,

MSE
(
M̂3

)
≥ Ȳ2

{(
1 − f

n

)
C2

0 +
W2(k − 1)

n
C2

0(2) − bT D−1b
}

=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12···p
)
+

W2(k − 1)
n

S 2
0(2)

(
1 − R2

(2)0.12···p
)
+

(
1
n′
− 1

N

)
S 2

0R2
0.12···p

}
with equality holding if

G(1)
(
Ȳ , eT

)
= −ȲD−1b.
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Remark 12. The class of estimators M̂3 given by (3.38) is very large, if the parameters in the
function G(ȳ∗, uT ) are so chosen that they satisfy (3.42), the resulting estimator will have MSE given
by (3.41) or (3.45). A few examples are

M̂3(1) = ȳ∗ + ϕT (u − e), M̂3(2) =
ȳ∗2

ȳ∗ − ϕT (u − e)
, M̂3(3) = ȳ∗ exp

(
ϕT log u

)
,

M̂3(4) = ȳ∗
{
1 + ϕT (u − e)

}
, M̂3(5) = ȳ∗ exp

(
ϕT (u − e)

)
,

where ϕT = (ϕ1, ϕ2, . . . , ϕ2p) is a vector of 2p constants. The optimum values of these constants are
determined from the conditions (3.42). Since (3.42) contains 2p equations, we have taken exactly 2p
unknown constants in defining estimators of the class.

Remark 13. For the case of a single auxiliary variable x1, the MSE of M̂3 defined at (3.41) is
minimized for

G(1)
(
Ȳ , 1, 1

)
=

 G(1)
1

(
Ȳ , 1, 1

)
G(1)

2

(
Ȳ , 1, 1

)  = −Ȳ
[

d(2)

d − d(2)

]
, (3.46)

G(1)
1

(
Ȳ , 1, 1

)
= −Ȳd(2) = −Ȳ

β01(2)

R
= −β01(2)X̄1

G(1)
2

(
Ȳ , 1, 1

)
= −Ȳ

(
d − d(2)

)
= − Ȳ

R
(
β01 − β01(2)

)
= − (

β01 − β01(2)
)

X̄1


, (3.47)

where G(1)
1 (Ȳ , 1, 1) and G(1)

2

(
Ȳ , 1, 1

)
denote the first order partial derivatives of G(ȳ∗, x̄∗1/x̄′1, x̄1/x̄′1)

about the point (Ȳ , 1, 1).
Thus, the resulting minimum MSE of M̂3 is given by

min MSE
(
M̂3

)
=

{(
1 − f

n

)
S 2

0

(
1 − ρ2

01

)
+

(
1
n′
− 1

N

)
S 2

0ρ
2
01 +

W2(k − 1)
n

(
1 − ρ2

01(2)

)
S 2

0(2)

}
(3.48)

which equals to approximate variance of the difference estimator

M̂30 = ȳ∗ + β01(2)
(
x̄1 − x̄∗1

)
+ β01

(
x̄′1 − x̄1

)
, (3.49)

where β01 and β01(2) are the known regression coefficients of y on x1 for the entire population and for
non-responding group in the population.

It can be also shown to the first degree of approximation that

MSE
(
M̂lr1

)
= min MSE

(
M̂3

)
, (3.50)

where min MSE(M̂3) is given by (3.48) and

M̂lr1 = ȳ∗ + β̂01(2)
(
x̄1 − x̄∗1

)
+ β̂01

(
x̄′1 − x̄1

)
,

where β̂01(2) and β̂01 are the estimates based on the data available under the given sampling design of
the regression coefficients β01(2) and β01 respectively.
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Remark 14. For the case of a two auxiliary variables (x1, x2), the MSE of the estimator M̂3 at (3.41)
is minimized for

G(1)
(
Ȳ , eT

)
=


G(1)

1

(
Ȳ , eT

)
G(1)

2

(
Ȳ , eT

)
G(1)

3

(
Ȳ , eT

)
G(1)

4

(
Ȳ , eT

)


= −Ȳ


d01(2)

d02(2)

d01(2) − d01

d02(2) − d02

 .

Thus the resulting minimum MSE of M̂3 (with two auxiliary variables) is given by

min MSE
(
M̂3

)
=

{(
1− f

n

)
S 2

0

(
1−R2

0.12

)
+

(
1
n′
− 1

N

)
S 2

0R2
0.12 +

W2(k−1)
n

(
1−R2

(2)0.12

)
S 2

0(2)

}
(3.51)

which equals to variance of the difference estimator

M̂3d(2) = ȳ∗ + β01.2(2)
(
x̄1 − x̄∗1

)
+ β02.1(2)

(
x̄2 − x̄∗2

)
+ β01.2

(
x̄′1 − x̄1

)
+ β02.1

(
x̄′2 − x̄2

)
,

where β01.2(2) = (β01(2)−β02(2)β21(2))/(1−β12(2)β21(2)) and β02.1(2) = (β02(2)−β01(2)β12(2))/(1−β12(2)β21(2))
are known partial regression coefficients of (y on x1) and (y on x2) for the non-responding group in
the population respectively and (β01(2), β02(2), β21(2), β12(2)) are the regression coefficients of (y on x1, y
on x2, x2 on x1, x1 on x2) for the non- responding units group in the population respectively.

If (β01.2, β02.1, β01.2(2), β02.1(2)) are not known, then one can define regression estimator (with two
auxiliary variables) for Ȳ as

M̂3lr(2) = ȳ∗ + β̂01.2(2)
(
x̄1 − x̄∗1

)
+ β̂02.1(2)

(
x̄2 − x̄∗2

)
+ β̂01.2

(
x̄′1 − x̄1

)
+ β̂02.1

(
x̄′2 − x̄2

)
,

where (β̂01.2, β̂02.1, β̂01.2(2), β̂02.1(2)) are the consistent estimates of (β01.2, β02.1, β01.2(2), β02.1(2)) respec-
tively based on the data available under the given sampling design.

It can be shown to the first degree of approximation that

MSE
(
M̂3lr(2)

)
= min MSE

(
M̂3

)
,

where min MSE(M̂3) is given by (3.48).

Remark 15. If n′ = N (i.e. the population means X̄1, X̄2, . . . , X̄p are known) then the class of
estimators M̂3 defined by (3.38) reduces to the class of estimators of population mean Ȳ as

M̂∗3 = H
(
ȳ∗, zT

)
,

where zT = (Z1,Z2, . . . , Zp,Zp+1,Zp+2, . . . ,Z2p),

Zi =
x̄∗i
X̄i
, i = 1, 2, . . . , p

=
x̄i−p

X̄i−p
, i = p + 1, p + 2, . . . , 2p
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and H(ȳ∗, zT ) is the function of (ȳ∗, zT ) such that

H
(
Ȳ , eT

)
= Ȳ , for all Ȳ

⇒ ∂H(·)
∂ȳ∗

∣∣∣∣∣∣(Ȳ ,eT )
= H1

(
Ȳ , eT

)
= 1.

Putting n′ = N in (3.45) we get the minimum MSE of M̂∗3 as

min MSE
(
M̂∗3

)
=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12···p
)
+

W2(k − 1)
n

(
1 − R2

(2)0.12···p
)

S 2
0(2)

}
.

Thus we state the following theorem.

Theorem 4. To the first degree of approximation

MSE
(
M̂∗3

)
≥

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12···p
)
+

W2(k − 1)
n

S 2
0(2)

(
1 − R2

(2)0.12···p
)}

equality holding if

H(1)
(
Ȳ , eT

)
= −ȲD∗−1b∗T ,

where

D∗ =
[

E∗ F∗

F∗T F∗

]
, b∗T =

(
Q∗T : g∗T

)
=

(
Q∗1,Q

∗
2, . . . ,Q

∗
p, g
∗
1, g
∗
2, . . . , g

∗
p

)
, g∗T =

(
1 − f

n

)
qT ,

H(1)(Ȳ , eT ) denotes the 2p elements column vector of the first partial derivatives of H(ȳ∗, zT ).

Remark 16. If n′ = N then M̂lr1 and M̂lr2 reduce to

M̂∗lr1 = ȳ∗ + β̂01(2)
(
x̄1 − x̄∗1

)
+ β̂01

(
X̄1 − x̄1

)
and

M̂∗lr2 = ȳ∗ + β̂01.2(2)
(
x̄1 − x̄∗1

)
+ β̂02.1(2)

(
x̄2 − x̄∗2

)
+ β̂01

(
X̄1 − x̄1

)
+ β̂02

(
X̄2 − x̄2

)
.

It can be shown to the first degree of approximation that

MSE
(
M̂∗lr1

)
=

{(
1 − f

n

)
S 2

0

(
1 − ρ2

01

)
+

W2(k − 1)
n

(
1 − ρ2

01(2)

)
S 2

0(2)

}
(3.52)

and

MSE
(
M̂∗lr2

)
=

{(
1 − f

n

)
S 2

0

(
1 − R2

0.12

)
+

W2(k − 1)
n

(
1 − R2

(2)0.12

)
S 2

0(2)

}
. (3.53)

It is to be mentioned that the regression estimator M̂∗lr1 is due to Singh and Kumar (2008a).
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From (3.52) and (3.53) we have

MSE
(
M̂∗lr1

)
−MSE

(
M̂∗lr2

)
=


(

1 − f
n

)
S 2

0
(ρ02 − ρ01ρ12)2(

1 − ρ2
12

) +
W2(k − 1)

n

(
ρ02(2) − ρ01(2)ρ12(2)

)2(
1 − ρ2

12(2)

) S 2
0(2)


which is always positive. Thus the estimator M̂∗lr2 is more efficient than Singh and Kumar (2008a)
estimator M̂∗lr1.

Remark 17. The optimum values of the derivatives A(1)(Ȳ , eT ), B(1)(Ȳ , eT ) and G(1)(Ȳ , eT ) respec-
tively given by (3.8), (3.25) and (3.42) are sometimes in terms of relationship between the parameters
and sometimes in the form of the value of constants equated to the function of parameters. When the
values of A(1)(Ȳ , eT ), B(1)(Ȳ , eT ) and G(1)(Ȳ , eT ) are of the form of relationship between the parameters
then it is rarely applicable in practice. But when the values of A(1)(Ȳ , eT ), B(1)(Ȳ , eT ) and G(1)(Ȳ , eT )
give solution in the form of constants equated to some parametric function then it may be possible to
use the optimum values by using the past data regarding parameters or by estimating the parameters
contained in the optimum value of constant using the sample data at hand. Reddy (1978) has shown
that values of such parameters are stable overtime and region. Das and Tripathi (1978) have illustrated
that the guessed values of such parameters are not close enough even though the suggested estima-
tors are better than conventional estimators. On the other hand Singh (1982) and Srivastava and Jhajj
(1983) have shown that if the optimum values of constants involved in the estimators are replaced by
their consistent estimators based on the sample values, the resulting estimator(s) will have the same
mean squared error up to terms of order n−1 as that of optimum estimator(s). Thus the proposed
classes of estimators M̂1, M̂2 and M̂3 are recommended for the use in case of large sample surveys.

4. Efficiency Comparisons

From (2.2), (3.9), (3.26) and (3.45) we have

Var (ȳ∗) −min MSE
(
M̂1

)
= Ȳ2QT E−1Q ≥ 0 (4.1)

Var (ȳ∗) −min MSE
(
M̂2

)
= Ȳ2qT a−1q ≥ 0 (4.2)

Var (ȳ∗) −min MSE
(
M̂3

)
= Ȳ2bT D−1b ≥ 0 (4.3)

min MSE
(
M̂1

)
−min MSE

(
M̂3

)
= Ȳ2

(
FT E−1Q − g

)T
A−1

(
FT E−1QT − g

)
≥ 0 (4.4)

min MSE
(
M̂2

)
−min MSE

(
M̂3

)
= Ȳ2 W2(k − 1)

n
qT

(2)a
−1
(2)q(2) ≥ 0, (4.5)

where A = (F − FT E−1F).
Thus all the estimators M̂1, M̂2 and M̂3 are better than the conventional unbiased estimator ȳ∗,

which does not utilize auxiliary information. Further it follows from (4.1)–(4.5) that the estimator M̂3
is the best estimator among all the estimators ȳ∗, M̂1, M̂2 and M̂3.

5. Empirical Study

To illustrate the performance of various estimators of population mean Ȳ relative to usual unbiased
estimator ȳ∗, we consider the same data earlier considered by Khare and Sinha (2007).
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Table 1: Percent relative efficiencies(PREs) of M̂i, i = 1, 2, 3 with respect to ȳ∗ for different values of k.
N = 95, n = 35, n′ = 45

Estimator Auxiliary Population-I Population-II
variate(s) 1/k 1/k

(1/5) (1/4) (1/3) (1/2) (1/5) (1/4) (1/3) (1/2)
ȳ∗ - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

M̂1
x1 123.24 120.01 115.91 110.61 160.92 155.92 149.94 142.53

x1, x2 127.53 125.07 122.27 118.39 186.64 177.36 166.51 153.67

M̂2
x1 102.34 102.71 103.22 103.97 114.99 117.39 120.73 125.66

x1, x2 107.45 108.71 110.46 113.11 133.11 139.45 148.81 164.01

M̂3
x1 124.54 121.54 117.66 112.48 193.72 191.25 188.09 183.89

x1, x2 133.02 130.71 127.68 123.54 235.64 228.25 219.18 207.78

The data on physical growth of upper socio-economic group of 95 school going children of
Varanasi under ICMR study, Department of Paediatrics, Banaras Hindu University, during 1983–
1984 has been taken under study. The first 25% (i.e. 24 children) units have been considered as
non-responding units. The descriptions of the variates are given below:

Population-I

y : Height(in cm.) of the children,
x1 : Skull circumference(in cm.) of the children,
x2 : Chest circumference(in cm.) of the children.

For this population we have

Ȳ = 115.9526, X̄1 = 51.1726, X̄2 = 55.8611, C0 = 0.05146, C1 = 0.03006, C2 = 0.05860,
C0(2) = 0.04402, C1(2) = 0.02478, C2(2) = 0.05402, ρ01 = 0.3740, ρ02 = 0.620
ρ01(2) = 0.571, ρ02(2) = 0.401, ρ12 = 0.2970, ρ12(2) = 0.570, N = 95, n = 35, n′ = 45.

Population-II

y : Weight(in kg.) of the children,
x1 : Chest circumference(in cm.) of the children,
x2 : Mid-arm circumference(in cm.) of the children,

For this population we have

Ȳ = 19.4968, X̄1 = 55.8611, X̄2 = 16.7968, C0 = 0.15613, C1 = 0.05860, C2 = 0.08651,
C0(2) = 0.12075, C1(2) = 0.05402, C2(2) = 0.07125, ρ01 = 0.846, ρ02 = 0.797,
ρ01(2) = 0.729, ρ02(2) = 0.757, ρ12 = 0.725, ρ12(2) = 0.641, N = 95, n = 35, n′ = 45.

We have computed the percent relative efficiencies of the proposed estimators(PREs), M̂1, M̂2 and
M̂3 with respect to conventional unbiased estimator ȳ∗ for the two data sets and findings are displayed
in Table 1.

Table 1 exhibits that the estimator M̂3 is the best estimator among ȳ∗, M̂1, M̂2 and M̂3 in both the
populations respectively for single as well as double auxiliary variables. It is also observed that for
single as well as double auxiliary variables the percent relative efficiencies(PREs) of the estimators
M̂1 and M̂3 over the usual unbiased estimator decreases as the value of ȳ∗ increases while increases
for the estimator M̂2 as the value of k increases for both the populations.
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