DOI QR코드

DOI QR Code

Nucleophilic Effect of Alkylbenzimidazole and Micellar Effect of Cetylpyridinium chloride(CPyCl) on Dephosphorylation of Diphenyl-4-nitrophenylphosphinate(DPNPIN)

Diphenyl-4-nitrophenylphosphinate(DPNPIN)의 탈인산화반응에 미치는 Alkylbenzimidazole의 친핵적 및 Cetylpyridinium chloride(CPyCl) 미셀 촉매효과

  • 김정배 (계명대학교 환경대학 지구환경학과) ;
  • 김학윤 (계명대학교 환경대학 지구환경학과)
  • Received : 2010.01.11
  • Accepted : 2010.03.31
  • Published : 2010.05.31

Abstract

This study is mainly focused on micellar effect of cetylpyridinium chloride(CPyCl) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). The reactions of DPNPIN with R-BI$^{\ominus}$ are strongly catalyzed by the micelles of CPyCl. Dephosphorylation of DPNPIN is accelerated by BI$^{\ominus}$ ion in $10^{-2}M$ carbonate buffer(pH 10.7) of $4{\times}10^{-3}M$ CPyCl solution up to 100 times as compared with the reaction in carbonate buffer by no BI solution of $4{\times}10^{-3}M$ CPyCl. The value of pseudo first order rate constant($k^m_{BI}$) of the reaction in CPyCl solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-BI$^{\ominus}$ in micellar solutions are obviously slower than those by BI$^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-BI$^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, cetylpyridinium chloride(CPyCl), strongly catalyzes the reaction of diphenyl-4-nitrophenylphosphinate(DPNPIN) with alkylbenzimidazole (R-BI) and its anion(R-BI$^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}M$ CPyCl in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=1.0{\times}10^{-2}sec^{-1}$) of the dephosphorylation by a factor ca.14, when compared with reaction ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) in $1{\times}10^{-4}M$ BI solution(without CPyCl). And no CPyCl solution, in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) of the dephosphorylation by a factor ca.36, when compared with reaction ($k_{\Psi}=2.0{\times}10^{-5}sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-BI$^{\ominus}$ in the micellar pseudophase are much smaller than that of BI$^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CPyCl.

Keywords

References

  1. Blatt, A. H., 1943, Organic Synthesis, Collective vol II, 65.
  2. Bourne, N., Chrystiuk, E., Davis, A. M., Williams, A., 1988, A single transition state in the reaction of aryl diphenylphosphinate esters with phenolate ions in aqueous solution, J. Amer. Chem. Soc., 110, 1890-1895. https://doi.org/10.1021/ja00214a037
  3. Bunton, C. A., Cerichelli, G., Ihara, Y., Sepulveda, L., 1979, Micellar catalysis and reactant incorporation in dephosphorylation and nucleophilic substitution, J. Amer. Chem. Soc., 101, 2429-2435. https://doi.org/10.1021/ja00503a032
  4. Bunton, C. A., Hong, Y. S., Romsted, L. S., Quan, C., 1981, Micellar catalysis of dephosphorylation by benzimidazolide and naphth-2,3-imidazolide ions, J. Amer. Chem. Soc., 103, 5784-5788. https://doi.org/10.1021/ja00409a028
  5. Bunton, C. A., Hong, Y. S., Romsted, L. S., Quan, C., 1981, Catalysis by hydrophobic tetraalkylammonium ions; Dephosphorylation of p-nitrophenyl diphenyl phosphate, J. Amer. Chem. Soc., 103, 5788-5794. https://doi.org/10.1021/ja00409a029
  6. Bunton, C. A., Hong, Y. S., 1982, Solution behavior of surfactants, Ed. by Mittal and Fendler, Plenum pub. cor., vol.2, 1137.
  7. Bunton, C. A., Debuzzaccarini, F., Hamed, F. H., 1983, Dephosphorylation in cationic micelles and microemulsions; Effects of added alcohols, J. Org. Chem., 48, 2457-2461. https://doi.org/10.1021/jo00163a003
  8. Bunton, C. A., Moffatt, J. R., 1985, Micellar reactions of hydrophilic ions; A coulombic model, J. Phys. Chem., 89(20), 4166-4169. https://doi.org/10.1021/j100266a003
  9. Bunton, C. A., Cuenca, A., 1987, Abnormal micellar effects on reactions of azide and N-alkyl-2-bromopyridinium ions, J. Org. Chem., 52(5), 901-907. https://doi.org/10.1021/jo00381a032
  10. Bunton, C. A., Mhala, M. M., Moffatt, J. R., 1989, Nucleophilic reactions in zwitterionic micelles of amine oxide or betaine sulfonate surfactants, J. Phys. Chem., 93(2), 854-858. https://doi.org/10.1021/j100339a061
  11. Bunton, C. A., Mhala, M. M., Moffatt, J. R., 1989, Reactions of anionic nucleophiles in anionic micelles; A quantitative treatment, J. Phys. Chem., 93(23), 7851-7856. https://doi.org/10.1021/j100360a025
  12. Bunton, C. A., 1997, Reactivity in aqueous association colloids. Descriptive utility of the pseudophase model, J Molecular Liquids, 72, 231-249. https://doi.org/10.1016/S0167-7322(97)00040-8
  13. Cook, R. D., Diebert, C. E., Schwarz, W., Turley, P. C., Haake, P., 1973, Mechanism of nucleophilic displacement at phosphorus in the alkaline hydrolysis of phosphinate Esters, J. Amer. Chem. Soc., 95, 8088-8096. https://doi.org/10.1021/ja00805a023
  14. Cook, R. D., Rahhal, A. L., 1986, The kinetics of the alkaline hydrolysis of aryl diphenylphosphinothioates; The significance for the mechanism of displacement at phosphorus, Tetrahedron Letters, 26, 3147-3150.
  15. Dekeijzer, A. H., Koole, L. H., Van der Hofstad, W. J. M., Buckrate, H. M., 1988, Enhancement of nucleophilic substitution reactions in phosphate esters; Influence of conformational transmission on the rate of solvolysis in alkyl diphenylphosphinates, J. Org. Chem., 54, 1453-1456. https://doi.org/10.1021/jo00267a044
  16. Fendler, J. H., Fendler, E. J., 1975, Catalysis in micellar and macromolecular system, Academic press, New York, N.Y., 30-47.
  17. Fendler, E. J., 1966, Reaction Mechanism in Phosphate Ester Hydrolysis, John Wiley, 6.
  18. Hartly, G. S., 1936, Aqueous solution of paraffin chain salt, Herman Paris. press, 125-258.
  19. McBain, J. W., 1913, Micellar formation of aqueous solution, Trans. Faraday Soc., 9, 99-112.
  20. Perrin, D. D., Dempsey, B., 1974, Buffers for pH and Metal Ion Control, Champman and Hall (London), 5.
  21. Quina, F. H., Chaimovich, H., 1979, Ion exchange in micellar solutions 1; Conceptual framework for ion exchange in micellar solutions, J. Phys. Chem., 83(14), 1844-1850. https://doi.org/10.1021/j100477a010
  22. Santiago, J. Y., Nicholas, D. G., Bunton, C. A., 2004, Examination of the pseudophase model of monomer-micelle interconversion in cetylpyridinium chloride, J. Colloid and Interface Science, 281, 482-487. https://doi.org/10.1016/j.jcis.2004.08.065