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Abstract

Geostatistical data among spatial data is analyzed in three stages: (1) variogram estimation, (2) model

fitting for the estimated variograms and (3) spatial prediction using the fitted variogram model. It is very

important to estimate the variograms properly as the first stage(i.e., variogram estimation) affects the next

two stages. In general, the variogram is estimated with the moment estimator. To estimate the variogram,

we have to decide the ‘lag increment’ or the ‘number of lags’. However, there is no established rule for

selecting the number of lags in estimating the variogram. The present paper proposes a method of choosing

the optimal number of lags based on the PRESS statistic. To show the usefulness of the proposed method,

we perform a small simulation study and show an empirical example with with air pollution data from Korea.

Keywords: Variogram, lag increment, number of lags, optimal lag, default lag.

1. Introduction

Geostatistical data among spatial data, also termed random field data, consists of observations

measured at known specific locations or within specific regions. Because there are innumerable sit-

uations in which data are collected at various locations in space, application fields of spatial statistics

are extensive. For example, the application fields include geology, soil science, image processing,

epidemiology, crop science, ecology, forestry, astronomy, atmospheric science and environmental

science. For these fields, practically, many studies have been carried out. A representative exam-

ple of how to use geostatistics in environmental problems is given by Journel (1984). Istok and

Cooper (1988) demonstrated how to predict ground contaminant concentrations using geostatistics

and Myers (1984) implemented it to assess the movement of a multi-pollutant plume. Furthermore,

Webster (1985) investigates soil characteristics and Piazza et al. (1981) analyse gene frequencies.

The analysis of such data is carried out in three stages: (1) estimating variograms, (2) fitting

variogram models to the estimated variograms and (3) predicting the value at a specified location
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using the fitted variogram model. It is very important to estimate the variograms well as the first

stage(i.e., variogram estimation) affects the next two stages. In general, the variogram is estimated

with the moment estimator (Matheron, 1963), and we have to decide the ‘lag increment’ or the

‘number of lags’ as it is estimated. Practically in real data analysis, data analyst estimates the

variogram by using several numbers of lags, and then selects the most proper number of lags among

them. This can lead to the subjectivity of the analyst and a preposterous result in estimating the

variogram.

This paper proposes a method of choosing the optimal number of lags(or the optimal lag increment)

in estimating the variograms based on given spatial data. To show the usefulness of the proposed

method, we perform a small simulation study and show an empirical example with the air pollution

data in Korea.

For simplicity, we assume that the underlying process of the observed spatial data is stationary and

isotropic. For computations, the software S−Plus is used with its spatial module S+SpatialStats.

The article is organized as follows. Section 2 briefly outlines the basics of spatial statistics. In

Section 3 introduces a method selecting the optimal number of lags in variogram estimation. A

small simulation study is performed in Section 4 to illustrate the usefulness of the proposed method.

In Section 5 presents an empirical example and discuss its results. Concluding remarks are made

in the last Section.

2. Outline of Spatial Statistics

Spatial data can be considered as a realization of a stochastic process Z(s), i.e.,

{z(s) : s ∈ D ⊂ Rr} , (2.1)

where s indicates a location in D and Rr is a r-dimensional Euclidean space. Most often r is 1, 2

or 3. The basic form of spatial data can be expressed as (zi, si), i = 1, . . . , n, where zi is the ith

observation of a phenomenon of interest at location si. In spatial data analysis, it is assumed that

the observed data have the following structure

z(s) = m(s) + e(s), (2.2)

where m(s) denotes a large-scale variation called drift or trend and e(s) a small-scale variation. The

latter term is a fluctuating random component with zero expectation and a covariance structure(or

model) containing some parameters like random variation or measurement error. In most cases,

a spatial data set represents a single realization of a random process. As such, some degree of

stationarity must be assumed in order to make inferences about the data. Stationarity refers to

some form of ‘location invariance’ of the data. It implies that the relationships within any subset of

points remain the same no matter where the points reside in space (Mathsoft, 1996). In particular,

when the mean and variance of the first difference of the stochastic process Z(s) satisfy

E(Z(sss+ ddd)− Z(sss)) = 0, (2.3)

Var(Z(sss+ ddd)− Z(sss)) = 2γ(ddd), sss, sss+ ddd ∈ D.

Z(·) is said to be intrinsically stationary where 2γ(ddd) and γ(ddd) are called the variogram and semi-

variogram, respectively. Furthermore, if 2γ(ddd) = 2γ(‖ ddd ‖), the variogram is said to be isotropic. If

2γ(ddd) depends on the direction of ddd as well as its distance ||ddd ||, it is anisotropic. For simplicity, we

use the term variogram instead of semivariogram where there is no confusion.
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The first step of spatial analysis is to estimate the variogram γ(ddd) using the observed data. When we

can assume that the variogram is isotropic, an estimator for the variogram called sample variogram

(Matheron, 1963) can be computed by

γ̂(d) =
1

2Nd

∑
N(d)

(z(sssi)− z(sssj))2. (2.4)

Here N(d) is the set of all pairs with Euclidean distances d, Nd is the number of distinct pairs in

N(d), and z(sssi) and z(sssj) are data values at spatial locations sssi and sssj , respectively. When the

variogram is an isotropic, the directional sample variogram is computed using the same formula by

replacing d by vector ddd. Practically, in order to calculate the variogram values using Equation (2.4),

we select first the lag distances ‘d’, then calculate the variogram values by regarding pairs with dis-

tance within ‘d±lag.tol’ as the pairs in N(d). Symbol ‘lag.tol’ means lag tolerance which establishes

distance bins for the lag increments, to accommodate for unevenly spaced observations, and if it is

half the lag increment, no overlap of the distance classes is allowed. The ‘lag increment(d±lag.tol)’

defines the distances at which the variogram is calculated and the number of lags in conjunction

with the size of the lag increment will define the total distance over which the variogram is calcu-

lated. To estimate the variogram, we have to decide the ‘lag increment’ or the ‘number of lags’.

They are in the reciprocal relationship, i.e., ‘the number of lags = maxdist / lag increment’, where

maxdist is the maximum distance over the field of data. A specific number of lags’ as k is denoted

throughout this paper.

The next stage of spatial analysis is to fit a variogram model that explains best the dependence(auto-

correlation structure) of the underlying stochastic process. Most variogram models contain three

parameters; namely, range, sill and nugget(or nugget effect). As the separation distance between

pairs increase, the corresponding variogram value will also generally increase. Eventually, however,

an increase in the separation distance between pairs of values and the variogram reaches a plateau.

The distance at which the variogram reaches this plateau is called the range. The sill is the plateau

the variogram reaches at the range. When we conduct the simulation, the partial sill is estimated

as the sill of the sample variogram minus any nugget is used (Isaaks and Srivastava, 1989; Mathsoft,

1996). The nugget is the vertical jump from the value of 0 at the origin to the value of the variogram

at extremely small separation distances. Also, γ(0, θ) = 0 but limd→0 γ(d, θ) = c0 for any constance

c0 that is called the nugget because it is believed that microscale variation is causing a discontinuity

at the origin (Cressie, 1991). It is estimated from the sample variogram as the value of γ(d) for

d = 0.

There have been proposed so far several variogram models(functions) according to its form; for

example, spherical, gaussian, exponential as bounded variogram models, and power and linear

models as unbounded variogram models. Here, we introduce only three models which are used for

our study. They are given as follows (Cressie, 1991).

Spherical model:

γs(d;θθθ) =


0, d = 0,

θn + θs

[(
3

2

)
d

θr
−

(
1

2

(
d

θr

)3
)]

, 0 < d ≤ θr,

θn + θs, d ≥ θr.

(2.5)
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Gaussian model:

γs(d;θθθ) =


0, d = 0,

θn + θs

[
1− exp

(
−
(
d

θr

)2
)]

, d 6= 0,
(2.6)

Exponential model:

γr(d;θθθ) =

 0, d = 0,

θn + θs

[
1− exp

(
− d

θr

)]
, d 6= 0,

(2.7)

where θθθ = (θn, θs, θr), θn is nugget effect, θs = (σ2−θn) is sill, and θr is range. Strictly speaking, θs
is partial sill and σ2 is sill. The above variogram models can be fit by several methods; Maximum

Likelihood(ML), Restricated Maximum Likelihood(REML), Least Squares, Weighted Least Squares

method, and so on. Zimmerman and Zimmerman (1991) compare several estimation methods and

conclude that ordinary nonlinear least squares or some form of weighted nonlinear least squares is

usually as good as many of the more complicated and computationally intensive methods (Mathsoft,

1996). Thus, we used the weighted nonlinear least squares estimator in this paper.

An important problem in spatial statistics is to predict the unobserved value z(sss0) at a specified

location sss0 based on the information of n observations z(sssi), i = 1, . . . , n. This kinds of spatial

prediction problem is known as kriging in spatial statistics, and there are some types of kriging such

as simple, ordinary, and universal kriging. Here we will consider only ordinary kriging that is often

associated with the B.L.U.E.(best linear unbiased estimator) because it is used in our simulation.

We will look at how the ordinary kriging weights are calculated. In order to solve above a question,

we consider a linear predictor as

Ẑ(sss0) =

n∑
i=1

wiZ(sssi). (2.8)

It is a best linear unbiased prediction method under the assumption that the stochastic process

underlying the observations is second-order stationary, i.e.,

E (Z (sssi)) = 0, Var (Z (sssi)) = σ2, Cov (Z (sssi) , Z(sssj)) = C(sssi − sssj), (2.9)

for any i, j. For unbiasedness, the weights must satisfy
∑n

i=1 wij = 1. By minimizing the prediction

variance E(Z(sss0) − Ẑ(sss0))2 under the equality constraint on the weights, we obtain the following

system of equations:

−
n∑

j=1

wjC(sssi − sssj) + C(sss0 − sssj)− λ = 0, (i = 1, . . . , n),

n∑
i=1

wi = 1, (2.10)

where λ is a Lagrange multiplier and the covariance function is related to the variogram as C(sssi −
sssj) = σ2 − γ(sssi − sssj). If the covariogram C(sssi − sssj) and C(sss0 − sssi) are known, the optimal weights

{wi} can be obtained by solving the above equations. In practical data analysis we usually do not

know these variograms. Therefore, before applying this kriging method we have to estimate them.

More precisely, at first we calculate sample variograms, omnidirectional or directional variograms

depending on the structure of spatial correlation, and then find a theoretical variogram model which

fits best the sample variograms. There are two reasons why the sample variogram cannot be used



Data-Dependent Choice of Optimal Number of Lags in Variogram Estimation 613

Table 3.1. Estimated parameters in an exponential model for the variograms estimated by assigning three numbers of lags

Sill Nugget Range

Lag = 10 0.139 0.034 10.65

Lag = 15 0.103 0.003 13.76

Lag = 20 0.095 0.012 15.52

directly in the ordinary kriging system. First, there are often situations in which the distance from

the point being estimated to a particular sample is smaller than the distance between any pair of

available samples. Since the sample data set cannot provide any pairs for these small distances,

we must rely on a function that provides variogram values for all distances and directions, even

those that are not available from sample data. Second, the use of the sample variogram does not

guarantee the existence and uniqueness of the solution to the ordinary kriging system (Isaaks and

Srivastava, 1989).

3. The Optimal Number of Lags

We consider the following example before introducing the optimal number of lags.

Example 3.1. We consider the effect on variogram model fitting of the assigned numbers of lags.

The exponential model is fitted to Korean air pollution data(Co), which will be analyzed in Section

4. Table 3.1 shows that the estimated parameters are somewhat different depending on the assigned

number of lags.

This implies that the choice of the number of lags is important for model fitting. In the above

example, we can recognize that we need the criterion for selecting the number of lags.

Journel and Huijbregts (1978) suggest the following two practical rules in choosing the lag increment

and number of lags: (1) the experimental variogram should only be considered for distances d for

which the number of pairs is greater than 30. (2) The distance of reliability for an experimental

variogram is d < 1/2, where D is the maximum distance over the field of data. However, these

rules are ambiguous in choosing practically the number of lags or lag increment. The present paper

proposes a criterion for selecting the optimal number of lags.

Here, we focus on the number of lags denoted by symbol k because the above two factors are mutually

reciprocal. Now, our main interest is in finding the optimal number of lags among possible values

of k.

We define the Predicted Residual Sum of Square(PRESS) for finding the optimal number of lags as

PRESSk =

n∑
i=1

(
zi − ẑ(i)

)2
, for a fixed number of lags k, (3.1)

where zi is an observation at the ith location and ẑ(i) is the predicted value at the ith location using

the observed values excepting the ith one. We define the optimal number of lags as follows.

Definition 3.1. The optimal number of lags k̂∗ is the value of k which minimizes the PRESS statistic.

In some statistical packages, the number of lags is set to 10 or 20 as a default number of lags. Here,

we put the default numbers of lags k as 10(the default value in SAS package, SAS Institute Inc.
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(1998)) and 20(the default value in S−PLUS package), and compare the performance with that

of optimal k̂∗. From now on, we represent ‘the optimal numbers of lags’ as ‘the optimal lag’ or

‘optimal k̂∗’ and ‘the default number of lags’ as ‘the default lag’.

4. Simulation Study

We carry out a small simulation to investigate the performance of the optimal k̂∗ compared to

the default k = 10 and 20. In this study, we consider three models(spherical, exponential and

Gaussian), all of which contain three parameters(sill, nugget and range) and we restrict the scope

of the number of lags from 6 to 25 in selecting the optimal k̂∗. The range is related only to

the observation positions(latitude and longitude or east and west) and sill and nugget are also to

the observation values. For this reason, this simulation is conducted with varying only the range

parameter in each model.

Also, to compare performance of k̂∗ with k = 10 and 20, we use the root mean squared errors

RMSE1 and RMSE2.

RMSE1 =

√√√√ n∑
i=1

∣∣∣∣∣∣θ̂θθ∗i − θθθi∣∣∣∣∣∣2, RMSE2 =

√√√√ n∑
i=1

∣∣∣∣∣∣θ̂θθi − θθθi∣∣∣∣∣∣2, (4.1)

where θθθ = (θn, θs, θr)(θn: nugget, θs: sill, θr: range) is the true parameter vector, and θ̂θθ
∗

and θ̂θθ are

the estimated parameter vectors for each of the 100 datasets generated by using the optimal k̂∗ and

the default k = 10 and 20, respectively, symbol || · || indicating the Euclidean norm.

To show the usefulness of the optimal k̂∗ obtained by our method, a simulation study is conducted

in the following steps; (1) Fix the models(spherical, exponential, and Gaussian) and parameters(sill,

nugget, and range), and generate m(100400) lattice positions. In case of sample size 100 they are

generated by a 10×10 grid while for 400 observations a 20×20 grid is used. (2) Generate m observed

values at the m lattice positions with the fixed models and parameters, i.e., θs = 0.7, θn = 0.1, θθθr =

(2, 20) for the three models. m observations with the specified model and parameter sat the m lattice

positions can be generated using the function ‘rfsim’ in spatial module S+SpatialStats of S−Plus.

These observations are autocorrelated with errors of specified covariance model. (3) Generate 100

datasets, each of which is composed of m positions and the corresponding m observations. (4)

Select the optimal k̂∗ on the basis of the PRESS statistic. (5) Estimate the parameters of the

variogram model by using the optimal k̂∗ obtained for each dataset. (6) Calculate the RMSE1 for

the parameters estimated by the optimal k̂∗ in 100 datasets. (7) Calculate the RMSE2 for the

default k = 10 and 20 in 100 datasets. (8) Compare the results between (6) and (7).

The selection of the optimal k̂∗ can be explained as below.

Step 1. For a fixed lag k, estimate the variogram using n − 1 observations excepting the ith one

and obtain the predicted value ẑ(i) at the ith location based on the estimated variogram.

Step 2. For every i(i = 1, . . . ,m), calculate (zi − ẑ(i)) by repeating step 1 m times.

Step 3. For the fixed lag k, calculate the PRESS statistic
∑m

i=1(zi − ẑ(i))2.

Step 4. Calculate the PRESS for every k(6 ≤ k ≤ 25), and select the optimal k̂∗ which minimizes

the PRESS.

The results of the simulation study are given in from Table 4.1 to 4.4. They show a result of in

sample size 100 and 400 according to the range. We can find that the performance of the optimal
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Table 4.1. Simulation results(Sample size: 100, Range: 2)

Model θθθ
Optimal(k̂∗) Default(k = 10) Default(k = 20)

E(θ̂∗) S.E. RMSE1 E(θ̂) S.E. RMSE2 E(θ̂) S.E. RMSE2

θs = 0.7 0.73 0.023 0.73 0.024 0.74 0.023

Sph θn = 0.1 0.10 0.008 0.76 0.11 0.009 0.84 0.10 0.009 0.80

θr = 2 2.30 0.065 2.35 0.073 2.33 0.069

θs = 0.7 0.71 0.025 0.70 0.026 0.71 0.026

Gau θn = 0.1 0.14 0.005 0.83 0.16 0.006 0.91 0.15 0.005 0.89

θr = 2 2.47 0.064 2.56 0.068 2.51 0.068

θs = 0.7 0.80 0.032 0.82 0.034 0.80 0.033

Exp θn = 0.1 0.07 0.014 1.41 0.07 0.015 1.57 0.08 0.013 1.55

θr = 2 2.48 0.128 2.52 0.144 2.54 0.141

Sph: spherical, Gau: Gaussian, Exp: exponential

Table 4.2. Simulation results(Sample size: 100, Range: 20)

Model θθθ
Optimal(k̂∗) Default(k = 10) Default(k = 20)

E(θ̂∗) S.E. RMSE1 E(θ̂) S.E. RMSE2 E(θ̂) S.E. RMSE2

θs = 0.7 0.77 0.026 0.79 0.025 0.78 0.026

Sph θn = 0.1 0.10 0.010 5.57 0.07 0.012 6.46 0.08 0.011 6.29

θr = 20 22.4 0.501 21.9 0.617 22.1 0.595

θs = 0.7 0.71 0.025 0.70 0.026 0.71 0.026

Gau θn = 0.1 0.14 0.005 7.22 0.15 0.006 8.10 0.14 0.005 7.78

θr = 20 24.4 0.570 25.3 0.616 24.8 0.611

θs = 0.7 0.85 0.036 0.87 0.038 0.85 0.037

Exp θn = 0.1 0.07 0.015 24.1 0.06 0.017 27.2 0.08 0.014 25.3

θr = 20 29.2 2.242 30.5 2.523 30.2 2.326

Table 4.3. Simulation results(Sample size: 400, Range: 2)

Model θθθ
Optimal(k̂∗) Default(k = 10) Default(k = 20)

E(θ̂∗) S.E. RMSE1 E(θ̂) S.E. RMSE2 E(θ̂) S.E. RMSE2

θs = 0.7 0.68 0.013 0.69 0.019 0.68 0.013

Sph θn = 0.1 0.12 0.009 0.89 0.12 0.017 1.27 0.12 0.011 0.94

θr = 2 2.19 0.086 2.32 0.116 2.20 0.090

θs = 0.7 0.72 0.027 0.73 0.028 0.73 0.029

Gau θn = 0.1 0.10 0.003 0.58 0.11 0.004 0.65 0.10 0.003 0.60

θr = 2 2.10 0.050 2.15 0.059 2.11 0.055

θs = 0.7 0.79 0.046 0.84 0.050 0.82 0.045

Exp θn = 0.1 0.10 0.006 2.94 0.06 0.018 3.55 0.08 0.009 3.14

θr = 2 2.78 0.281 2.89 0.346 2.79 0.304

k̂∗ is better than those of the two default values k = 10 and 20 in all cases of three models of tables

in the terms of the RMSEs. For example, the RMSE1 of the optimal k̂∗ is 0.76, while the RMSE2s

of the default k = 10 and 20 are 0.84 and 0.80, respectively, for spherical model with sample size

100 and range 2. The rest show the similar results.

In tables, E(θ̂∗) indicates mean of the optimal individual parameters θ̂∗s and E(θ̂) mean of the

default individual parameters θ̂s(cases of 10 and 20) estimated from 100 datasets for each model,

and θ is true parameters. The S.E.s represent the empirical standard error of the optimal individual

parameters θ̂∗s and of the default individual parameters θ̂s(cases of 10 and 20).

If we judge with the |E(θ̂∗)−θ| that is the difference between real and the mean of fitted parameters
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Table 4.4. Simulation results(Sample size: 400, Range: 20)

Model θθθ
Optimal(k̂∗) Default(k = 10) Default(k = 20)

E(θ̂∗) S.E. RMSE1 E(θ̂) S.E. RMSE2 E(θ̂) S.E. RMSE2

θs = 0.7 0.69 0.015 0.69 0.018 0.69 0.015

Sph θn = 0.1 0.11 0.006 3.92 0.12 0.014 9.84 0.11 0.007 4.07

θr = 20 20.7 0.388 22.5 0.957 20.6 0.403

θs = 0.7 0.72 0.026 0.72 0.026 0.73 0.026

Gau θn = 0.1 0.10 0.002 3.68 0.11 0.003 4.66 0.10 0.003 4.15

θr = 20 20.9 0.357 21.3 0.448 21.0 0.405

θs = 0.7 0.86 0.053 0.90 0.056 0.89 0.059

Exp θn = 0.1 0.12 0.006 27.1 0.11 0.013 33.7 0.12 0.007 33.3

θr = 20 30.8 2.490 35.6 3.006 33.9 3.045

in the case of the optimal and |E(θ̂) − θ| that is the result of default case of both 10 and 20, we

find that values of |E(θ̂∗)− θ| are smaller than those of |E(θ̂)− θ| in most cases. In this result, we

find that values of |E(θ̂∗) − θ| are smaller than those of |E(θ̂) − θ| in most cases. This also shows

that the performance of the optimal k̂∗ is better than those of the default k = 10 and 20 because

parameters obtained by the optimal k̂∗ are closer to the true parameter values than those by the

default k. From the parameter ranges view, we can note that case of range = 2 is fitter than that

of range = 20 for all models. Also, we find values of the S.E. in the case of the optimal are smaller

than those of both the default k = 10 and 20 in most cases. For reference, the computational costs

of the proposed method take about one minute to find the optimal k̂∗ in case sample size equal to

100 and about two minutes in case sample size equal to 400.

5. Empirical Example

In this section, we apply the proposed method to an actual dataset. First we show that the op-

timal k̂∗ is of better performance than the default k = 10 and 20, then spatial data analysis is

conducted with the obtained optimal k̂∗. This dataset consists of 116 measurements of carbon

monoxide(Co), which are taken from the Korean Ministry of the Environment in 2003. The mea-

surement sites are displayed in Figure 5.1. These data are measured by ppm(parts per million) unit

with TM(Transverse Mercator) coordinates which are generally used in Korean Map.

We divide the dataset into two subsets, i.e. the training dataset containing 100 observations and the

validation dataset containing 16 observations. Here, we randomly selected 16(6th, 9th, 11st, 16th,

19th, 23rd, 31st, 32nd, 76th, 85th, 86th, 91st, 93rd, 111st, 114th, 116th) observations as the validation

dataset and use the remaining 100 observations as training dataset. We analyze based on for the

purpose of this study and also show that the superiority of the proposed method remain in case of

different training and validation datasets. In Figure 5.1, symbol ‘ · ’ represents the positions of the

training data and ‘+’ positions of the validation data. To detect an appropriate variogram model,

we consider all three models described above as candidates, then select a model that minimizes the

PRESS.

Analysis is conducted with a given model as follows; (1) Determine the optimal k̂∗ based on the

PRESS using the training dataset. (2) Fit the variogram model using the selected optimal k̂∗. (3)

Predict the values at the locations of observations in the randomly selected validation dataset using

the fitted variogram model, and calculate the MSE(mean squared error) using the optimal k̂∗. (4)

Obtain the MSE using the default k = 10 and 20. (5) Compare the MSEs obtained by (3) and (4).
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Figure 5.1. 116 measured locations for carbon monoxide(Co) data in Korea

Table 5.1. PRESSs for default and optimal in exponential model

Optimal(k̂∗)
Default

k = 10 k = 20

PRESS 7.22(17) 7.49 7.24

To decide the optimal k̂∗, we calculate the PRESS by applying the proposed method to the training

dataset. As the results, the PRESS of the optimal k̂∗(7.22) is smaller than that of the default

k = 10(7.49) and 20(7.24) as shown in Table 5.1. From Table 5.1, in terms of PRESS, we can select

17 as the optimal k̂∗ for given exponential model.

Now, as we know the optimal k̂∗, we can fit the variogram model by using it. For comparison, we

also consider the default k = 10 and 20 with the exponential model. Plots of the fitted variogram

models for the three numbers of lags(k̂∗ = 17, k = 10, 20) are given in Figure 5.2, and the fitted

models for the three cases are as follows;

γ̂10(d;θθθ; k = 10) =

 0.0149 + 0.1015

[
1− exp

(
− d

21.8255

)]
, d 6= 0,

0, d = 0,
(5.1)

γ̂20(d;θθθ; k = 20) =

 0.0296 + 0.0905

[
1− exp

(
− d

28.7212

)]
, d 6= 0,

0, d = 0,
(5.2)

γ̂∗(d;θθθ; k∗ = 17) =

 0.0291 + 0.0826

[
1− exp

(
− d

16.1157

)]
, d 6= 0,

0, d = 0.
(5.3)

The sum of the squared residuals indicate the goodness of fit of the variogram models are 0.0083

for the optimal k̂∗, 0.0039 for the default k = 10, and 0.0128 for the default k = 20. The MSEs

for predicting the validation data are 0.0453 for the optimal k̂∗, 0.0460 for the default k = 10 and

0.0461 for the default k = 20. Here we can note that the optimal k̂∗ is of better performance than

the rest from the MSE viewpoint, although the case of k = 10 has the smallest value of the sum of
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Figure 5.2. Plot of fitted variogram models(left: default = 10, middle: default = 20, right: optimal)

Table 5.2. Average of 10 MSEs for the different training and validation datasets

Optimal(k̂∗)
Default

k = 10 k = 20

Average MSE 0.0442 0.0460 0.0470

Figure 5.3. Contour plot of kriging prediction

squared residuals in training data.

To show that the superiority of the proposed method remain in case of different training and

validation datasets, we tried the above same analysis with the 10 different training and validation

datasets selected randomly among the same dataset with 116 observations. Table 5.2 shows the

MSEs in case of each dataset and averages of those 10 MSEs obtained for the three numbers of

lags(k̂∗, k = 10, 20). We can find that all of 10 MSEs in the optimal lag smaller than in the default

lag k = 10 and 20. Therefore, we can note that the superiority of the proposed method remain in

case of different training and validation datasets in Table 5.2.

Contour plot of the prediction surface based on the exponential model with k̂∗ = 17 is given in

Figure 5.3. In this figure, note that the predicted value for the air pollution(Co) is high in Seoul,

Busan, Daegu and Ulsan. We guess that the automobile and industrial plants cause this result.
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6. Concluding Remarks

We propose a method for selecting the optimal number of lags in estimating the variograms in spatial

data analysis. The usefulness of the proposed method is established through a simulation study.

We applied the proposed method in an empirical example and then conducted further analysis

with obtained optimal lag. The present paper, we proposed a method for finding the optimal lag

using the PRESS assuming that variogram model is given however a method for selecting optimal

variogram model remains to be studied.
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