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Abstract

Several methods were suggested for constructing a fuzzy relationship between fuzzy independent and de-
pendent variables. This paper reviews the use of the method by minimizing the square of the difference between
an observed and a predicted fuzzy number in an a-level linear regression model. We introduce a new distance
between fuzzy numbers on the basis of a mode, a core point and a radius of an @-level set of a fuzzy number and
construct the fuzzy regression model using the proposed fuzzy distance. We also investigate sufficient conditions
for an equivalence in the a-level regression model.
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1. Introduction

Tanaka et al. (1982) were the first to introduce a fuzzy method to construct a functional relationship
between fuzzy explanatory and response variables and suggested a fuzzy linear regression model as
follows:

YX) = FA,X), i=1,....n, (1.1)

where X; = (X0, Xi1, . . ., Xip) is a (p+1)-dimensional vector of known predictors, A = (Ag, Ay, ..., Ap)
is a (p + 1)-dimensional vector of unknown coefficients, F(A, X;) is a linear function about the vec-
tor A, and Y(X;) is a predicted variable corresponding to the input vector X;. The coefficient A;, the
predictor X;,, and the predicted value Y(X;) are LR-fuzzy numbers in the regression equation (1.1).

The membership function of an LR-fuzzy number A, denoted by (a, /,, r,) g, With a mode a and a
right(left) spread r, > 0 (I, > 0) is
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where the functions L and R are continuous and strictly decreasing functions on [0, 1] with Ls(1) =
RA(1) = 0 and L4(0) = R4(0) = 1. In particular, if the left and right spread are same, we denote the
symmetric fuzzy number as (a, s).g. Further, if L4(x) = Rs(x) = 1 — x, we call the LR-fuzzy number
a triangular fuzzy number and denote it as (a, l,, ,)r. An a-level set of the fuzzy number A with the
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membership function p,4, denoted by A(), is defined by A(a) = {x € R|ua(x) > o} for all @ € (0, 1].
The 0-level set A(0) is defined as the closure of the set {x € R|ua(x) > 0}.

Several methods have been suggested for constructing the fuzzy regression model (1.1). We can
classify a method estimating the fuzzy regression (1.1) into two categories; the first is a numerical
method minimizing the spread of the predicted fuzzy number and the second is a statistical method to
minimize the sum of the distance between the observed and the predicted fuzzy numbers. Linear and
non-linear programming have been used to construct the fuzzy regression model based on the objec-
tive problem with constrained conditions. The numerical methods for the fuzzy regression model was
developed by many authors Chen (1999), Hojati et al. (2005), Kao and Chyu (2002), Kao and Chyu
(2003), Nasrabadi and Nasrabadi (2004), Sakawa and Yano (1992), Tanaka et al. (1982). Another
direction for fuzzy regression is the statistical method that minimizes the difference between the es-
timated and the observed fuzzy outputs. The statistical method estimates fuzzy regression models by
first defining the distance between two fuzzy numbers and then generalizing to the distance within the
fuzzy regression model. Many studies have been suggested for the statistical method to construct the
fuzzy regression model Bargiela et al. (2007), Chang (2001), Coppi et al. (2006), Diamond (1988),
Diamond and Korner (1997), D’Urso (2003), Hong and Hwang (2004), Korner and Néther (1998),
Ming et al. (1997), Néther (2006), Wu (2003), Wiinsche and Nither (2002), Xu and Li (2001).

In a fuzzy theory, the a-level set A(@) describes the characteristics of the fuzzy number A and
many of the operations and relations of fuzzy numbers. Further, the membership function 4 can be
expressed by an indication function y (), which has 1 at points of A(«) and 0 at points of R \ A(«).
These imply that the predicted value Y(X;) in the fuzzy regression (1.1) can be estimated by the
a-level set Y;(@) of the fuzzy number based on the a-level set of the independent and dependent
variables {(X;(@), Yi(@))li = 1,...,n}. Recently, Wu (2003) and Wu (2008) introduced the a-level
linear regression model and constructed the model using numerical methods.

In this paper, we construct the a-level linear regression model of the fuzzy model (1.1) using a new
fuzzy distance between fuzzy input and output numbers on the basis of the modes, core points, and
radiuses of the a-level sets of fuzzy numbers and describe an equivalence in the fuzzy least squares
regression models.

The rest of this paper is organized as follows. Section 2 presents an a-level linear regression
model and we consider a new MCR(a)-distance to construct the fuzzy regression model in Section 3.
The sufficient conditions for an equivalence of the a-level linear regression model based on the eight
estimation methods are suggested in Section 4 and numerical examples are given in Section 5.

2. a-Level Linear Regression Model

This section introduces the operations of the a-level sets of LR-fuzzy numbers and then suggests an
a-level linear regression model.
The a-level set of LR-fuzzy number A = (a,l,,7,)r is a closed interval as

|A), A@)],

where A(a) = a - laL/gl(a) and Z(a') =a+ raRgl(a'). Thus, we can represent the a-level set of the
fuzzy number by the left and right spread as follows:

A(a) = (a, (@), ra(@)),

where [4(@) = [,L;' (@) and ra(@) = r,R;'(@). Since the a-level set of the LR-fuzzy number is the
interval, we obtain results of the operations of the a-level set from the interval arithmetic. In this
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paper, we let ¥,z be a set of all LR-fuzzy numbers. The fuzzy number A = (a,l,,r,)r is called a
nonnegative if [, < a.

If A and B are fuzzy numbers in ¥ and c is a real number, then the addition and multiplication
for the a-level sets A(a) and B(a) are given by

A(@) + B(a) = (a + b, ls(@) + Ip(@), ra(@) + rp(a)),
(ca, cly(@), cra(@)), if ¢>0,

(ca, |c|ra(a@), |clla(@)), if ¢<O.

cA(a) = {

In particular, if A and B are the nonnegative fuzzy numbers, then the multiplication of two level
sets is

A(a) - B(@) = (ab, alp(a) + bls(a) = Ia(@)lp(@), arg(a) + bra(a) + ra(@)rp(@)) .

Since Tanaka first introduced the fuzzy regression models in 1982, they have been applied in many
fields for explaining the relation between fuzzy independent and dependent variables. The fuzzy linear
regression model can be classified as follows:

(i) Input data is a fuzzy number but the regression parameter is a crisp number.
(i) The regression parameter is a fuzzy number but the input data is a crisp number.
(iii) The input data and regression parameter are both fuzzy numbers.

The one of purposes of the fuzzy regression analysis is to estimate the fuzzy output, which has
lower error between the predicted and observed output than any other estimated fuzzy number. We can
do this by predicting the a-level set of the observed fuzzy output. If the left and right reference func-
tions L4 and R4 are known, we can predict the shape of the fuzzy number A by some inverse images of
the membership function. Further, we can use the resolution identity, suggested by Zadeh (1975), to
find the membership function of the fuzzy number, in case the reference function of the fuzzy number
is not known. The resolution identity states that the membership function can be rewritten as

HA(X) = SUPae[0.11XX Ade)(X)-

The a-level set of the fuzzy linear regression model, denoted by Y (x;)(«), with fuzzy output, crisp
input and fuzzy parameters are

(a0, 1, (@), ra, (@) + (a1, la, (@), T4, (@) - xi1 + -+ - + (ap, [a, (@), ra, (@) - Xip,

where 0 < o < 1 and x;; (j = 0,..., p) are positive numbers. The operations of the a-level set of the
fuzzy number show that the above equation can be represented as follows:
P P P
Y(x)(@) = [Zakx,-k, D @), Zrk(mxik], @1
k=0 k=0 k=0

where x;p = 1.
Moreover, when the input and output are fuzzy numbers and the parameter is crisp we know that
the a-level set of the fuzzy linear regression model can be represented as

P p p
Y(X))(@) = [Zakxik, D k@, (@), ) @y, (a)] : 22)
k=0

k=0 k=0 =
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where Iy, (@) = rx,(a) = 1 for all @. In particular, if we assume that a; = [x(a) = rr(a) the equation
(2.2) equals

Y(Xl') =ay+ alX,-l + -+ a,,Xip.

This model was studied by Kao and Chyu (2003) and Kim et al. (2008).
Combining equations (2.1) and (2.2), we get

P
Zakxik, if a=1,
k=0
P P p
Y(X)(@) = (Zakxik, D @)l (@), Zrk(a/)rxik(a/)], if0<a<l, (2.3)
k=0 k=0 k=0
P P P
(Zakxik, Zlklx,-k, ZrkVX,k , if =0,
k=0 k=0 k=0

where x;0 = 1 and Iy, (@) = rx,(a) = 1 for all a.

Equations (2.1) and (2.2) are just special cases of model (2.3) when the regression coefficients
Ii(@) and ry(@) are independent of the number « or the parameters /(@) and ri () are regarded as
constants.

On the other hand, it is not easy to represent the the @-level set of the fuzzy linear regression model
with fuzzy input and parameters using the multiplication of the @-level set.This is because there are
many definitions for the multiplication of fuzzy numbers and the multiplication of the intervals cannot
be expressed in simple terms. Therefore, in this paper, we only consider the method constructing fuzzy
linear regression models with crisp input and fuzzy parameters, or fuzzy input and crisp parameters
using equation (2.3).

3. Fuzzy Regression Using MCR(a)-Distance

In this section, we define a new distance using the mode, core and radius of the a-level set of the fuzzy
number and then estimate the regression coefficients in the a-level linear regression models.
Let Ca(@) and R4(a) denote a core and radius of the a-level set of the fuzzy number A. Then,

Ca@ =a+ WO oy gy = WD

Further, we define a distance between the a-level sets of two fuzzy numbers A and B, denoted by
d*(A(a), B(a)), as follows:

d*(A(@), B(@)) = (a = b)* + (Ca(a) — Cp(@))* + (Ra(@) — Rp(e))*.

Since the distance includes the mode, core, and radius of the a-level set, we call the metric
df.(A(oz), B(a)) MCR(a)-distance. The simple calculation indicates that the MCR(a)-distance equals

1 1
2a = by + (a=b)ra(@) = rp(@) = La(@) + lp(@)) + 5(ra(@) = rp(@))” + S (la(@) = Ip(@))’.
In particular, when the fuzzy numbers A and B are symmetric, we get

d*(A(@), B(@)) = 2(a — b)* + (ra(a@) — r(a))*.



Equivalence in Alpha-Level Linear Regression 615
The MCR(a)-distance gives the distance between two fuzzy numbers as follows:

1
DA B) = [ e, Bayde.
0

where w(a) is a nonnegative and continuous function on [0, 1].

Notice that the smaller the distance between two fuzzy numbers, the closer the MCR(«)-distance
is to zero. Thus, we can estimate the fuzzy number that has a lower error between the predicted and
observed fuzzy number using the MCR(«)-distance. For the normal equations about the regression
coeflicients, we now define the n-vectors and matrixes with (p + 1) columns and n rows:

Y= Oryn o), X =[],
Ry(@) = (1, (@)1, @)1y, @) Ry(@) = [ry (@]
Ly(@) = (I, @, by (@.... .1, @), Lx@) = [ly@)] .

where ¢ denotes a transpose of the matrix.
When the a-level set of fuzzy input and output numbers are given as

Xi(@) = (xig, Ly (@), 1y (@) and  Yi(@) = (i, (@), 1y, (@),

the least squares estimates of the coefficient of the regression equation (2.3) based on the set {(X;; (@),
L Xip(@), Yi)li = 1,2,...,n} and MCR(a)-distance, denoted by P.(@) = &, (o), #()), are the
values obtained when the quantity

0@, (@), r(@) = Y d2(Y(X)(@), Yi(@))
i=1

is minimum. Here, an i term of the objective function equals

P 2
E(Y(X))(@), Yi(e) =2 (yi - Zakxik]

k=0

P )4 p
+ (yi - akxik] (ry[ (@)= > @) (@) = (@) + Y l(@)ly, (a)]
k=0 k=0

k=0

2 p .
+ % [ryi(a) - rk(a')rx,‘k ((Y)] " % (lyi(a) B ;lk(a)ZXik (a)) .

p
k=0

In order to obtain the least squares estimates (A, i(a), f()), we differentiate the i term of the
objective function partially with respect to the regression coeflicients (ao, a;, lo(@), [j(@), ro(@), rj(@)),
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and equating these partial derivative to zero, we get

n P n
D Gaxi + r(@)ry (@) = @)Ly (@) = Y (4 + 1y (@) — (@),
i=1 k=0 i=1
n p n
DU xij (dagi + (@) (@) = @)l (@) = D [ (43 + 1y (@) = Ly (@)
i=1 k=0 i=1

anzp: (@i + (@) @) = " (i + 1(@)),

i=1 k=0 i=1 (31)
n )4 n
D2 @) (@i + @ (@) = D ra (@) (i + 1y (@),
i=1 k=0 i=1
n p n
ZZ (@)1, (@) — arxi) = Z (ly,- (@) - yi),
i=1 k=0 i=1
n p

Ly (@) (@)L (@) = aixi) = D Ly (@) (1 (@) = 1)
i=1

i=1 k=0

The following theorem summarizes the normal equations for obtaining the regression coefficients
and uses a rank of the matrix, which is the maximal number of linearly independent columns of the
matrix.

Theorem 1. Suppose that the design matrix X'X has a full rank, and all components of the vec-
tors (X'X)"' X' Ly(@) and (X'X)"'X'Ry(a) are positive. Then, the estimates of the a-linear regression
coefficients using the MCR(«)-distance are given by

a=X'xX)"'xy, f(@) = XX)"'X'Ly(@) and #@) = X'X)"'X'Ry(a).

Proof: First, adding the first equation, —1 times the third and fifth equations in (3.1) produce

i)’i = iiakxik 3.2)
i=1

i=1 k=0

When the input Xy (k = 1,..., p) are crisp, we know that [,, (@) = ry, (@) = xi in the equation
(2.2). Hence, the the second, fourth, and sixth equations in (3.1) give

n p

zn:yixij = injzakxik- 3.3)
i=1

i=1 k=0

Equations (3.2) and (3.3) and the vector notation show that the normal equation for estimating the
regression coefficients a = (ay, .. . ,ap)’ is

X'Y = (X'X)a.

On the other hand, equation (3.2) and the third equation in (3.1) gives

n

Zn]Zp]rkm)xik = > n(@.

i=1 k=0 i=1
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Moreover, using the fourth equation in (3.1) and equation (3.3) we have

n n P

Zryi (a)x[j = fojzrk(a)rxik (@).

i=1 =l k=0
Thus, from the above equations, we get the normal equation as
Rx()'Ry(@) = (Rx(@)'Rx(a))r(a),

where r(e) = (ro(@), ..., r,(@)).
Using the same methods that were used in the above normal equation, we show that the normal
equation about the regression coefficient equals

Lx(@)'Ly(@) = (Lx(a)' Lx(2)(@),
where I(@) = (lp(@), . . ., [,(@))". The normal equations complete the proof. O

Theorem 2. Suppose that the vectors (Rx(a)'Rx(a))”'Rx(a)'Ry(a) have positive components and
the design matrixes X'X and Rx(a)'Rx(@) have a full rank. If X;; and Y; are symmetric fuzzy numbers,
then the estimates of the regression coefficients in equation (2.3) using the MCR(a)-distance are given
by

A=X'X)'X'Y and (@)= (Rx(a)Rx(@) 'Rx(@)Ry(a).
Proof: The assumptions imply that
lyl'(a) = ryi(a)a lx,‘j (a) = rx,‘j(a) and lk(a) = rk(a)'

From the above results and equation (3.1) we obtain equations (3.2) and (3.3),

n

iim(a)rx,k (@) = > (@)

i=1 k=0 i=1
and
n n )4
D @@ = Y re (@) rdarg (@),
i=1 i=1 k=0
The results prove the theorem. U

When the @-linear regression does not satisfy the conditions suggested in Theorems 1 and 2, we
do not obtain a unique solution for the regression coefficients in (2.3). In this case, we use an objective
function as follows:

min > d2(Y(X;)(@), Yi(@)) (34)
i=1
subject to

k(@)>0 and r(a)=>0, (k=0,...,p).
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The least squares estimates (4, i(@), #(@)) using MCR(w)-distance indicate that the fuzzy least
squares estimate )A’i(a/) of the a-level set Y(X;)(@) equals

p

P p
Pie) = | Y s Y @l (@), Y i@ry @], (3.5)

k=0 k=0 k=0
In Section 5, we will show the least squares regression model based on MCR(«)-distance using
equation (3.4).
4. Equivalence in the a-Level Linear Regression Model

In this section, we review some distances between two a-level sets of fuzzy numbers used in con-
structing the fuzzy regression models and then present the sufficient conditions for an equivalence in
the a-level linear regression models.

First of all, we can use Euclidean distance to describe the distance between fuzzy numbers since
the a-level set of the fuzzy number can be regarded as a vector in R3. The distance between two
a-level sets A(a) and B(@) on the basis of Euclidean distance can be defined by

d>.(A(@), B(@)) = (a = b)* + (ra(@) — rp(@))* + (la(@) - Ip(@))* .

Next, we can consider the endpoints of the closed interval to define the distance between two
a-level sets. Diamond and Korner (1997), Ming et al. (1997), Chang (2001) and Xu and Li (2001)
defined the distance between fuzzy numbers using the integral of the endpoints of the a-level set. The
distance based on the endpoints can be represented by

2 — — 2 2
d2,(A(e), B(@)) = w(@) (A(@) - B@)) + (A(@) - B(@)) .
A simple calculation shows that the distance dgp(A(a), B(@)) equals
2(a - b)* + 2(a — b)(ra(@) — rp(@) — La(@) + [5(@)) + (ra(@) — rp(@))* + (la(@) — Ig())?,

where w(a) = 1 on the interval [0, 1].

On the other hand, Chen (1999) and Nasibov (2007) used an internally dividing point and a width
of the a-level set to measure the distance between two fuzzy numbers. We write the internally dividing
point and the width of the a-level set A(a) as

L(A(@) = AA(@) + (1 = DA(@) and W(A(@)) = A(a) - A(a),

where 0 < A < 1. The distance between two a-level sets A(a) and B(«a), introduced by Chen (1999),
can be represented as

d2,(A(@), B(@)(D) = ((A(@)) = L(B(@)))* + (ra(@) = rg(@)* + (a(a@) — Ip(a))*.
Using the mode and spreads of the fuzzy number, the distance dfh(A(a), B(a))(1/2) equals
5 5
(a-Db)*+ 2 ra(@) = rp(@))® + 7@ - Ip(@))*

1
+2(a = b)(ra(e) = rp(@) = Ia(@) + [p(@)) = S(ra(@) = rp(@)(la(@) = Ip(@)).
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Further, we can express the distance proposed by Nasibov (2007) as
d2,(A(@), B@)(A) = w(@) [(1Li(A@)) = Li(B(@)))* + (Wa(e) — Wp(@))?].

When w(a) = 1 on [0, 1], we know that the distance d?2,(A(a), B(@))(1/2) is equal to

(@) + 2ra(@) = rp(@)) + 2 Uafe) ~ Iy(@))
200 = DA~ (@) — ) + 15(@) + 2 rae) = @) La(@) ~ ly(@).

Now, we consider an equivalence of the a-level linear regression models. Similar to MCR(a)-
distance in Section 3, we can estimate the regression coefficients in (2.3) by applying the distance
between a-level sets (as suggested by many authors) to the a-level linear regression models. In order
to guarantee the solution of the normal equation, we add the distances introduced in this section to
the square of the difference between the modes of the fuzzy numbers. If there exist solutions of the
normal equation, the distance changed by adding the mode has the same solutions with the original
distance.

We denote the value that minimizes the following objective function

n

P 2
D2 (X, Yica)) + [y,- - akxik] ] @.1)
k=0

i=1

using Euclidean distance d2.(Y(X;)(@), Y;(@)) as P..(@). We also denote the estimator derived by using
the endpoints as P,,(a), suggested by Chen (1999) as P, (a), and by Nasibov (2007) as P,.(«).

The following theorem shows that fuzzy regression coefficients estimated by mutually different
methods are the same.

Theorem 3. Suppose that the a-linear regression model (1.1) satisfies conditions given in Theorem
1 (or Theorem 2). Then, the estimated regression coefficients P, (), Pe,,(a), P.u(@) and P, (@) are all
the same as the least squares estimators using the (&, i(a), t(@)) suggested in Theorem 1 (or Theorem
2).

Proof: Although it is a tedious and intricate process to find the normal equations using the distance
4z (YX) (@), Yi(@), d,(Y(X))(@), Yi(@)), d2,(Y(Xi)(@), Yi(@)) and d;,(Y(X;)(@), Yi(@)), it is not dif-
ficult to obtain the same normal equation that is obtained by using MCR(a)-distance from similar

methods in Theorem 1 (or Theorem 2). Hence, we dispense with the process in the proof. O

The examples in Section 5 will show that the least squares estimators ISec(a), P, p(a), Pch(a) and
P,.(@) do not conform to the estimate P.(«@) when the conditions given in Theorem 3 do not hold on
the a-linear regression model.

5. Numerical Examples

In this section, we confirm the equivalence of the a@-linear regression model estimated by several
different methods through four examples, and we also compare the estimates of the parameters using
several distances between a-level sets defined by different methods. We only use triangular fuzzy
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Table 1: Numerical data for in Example 1

Input Output Y;(0, 1)
Xi Vi 1,,(0.1) 1,,(0.1)
5 11 6.3 7.2
8 16 4.5 3.6
11 18 2.7 2.7
14 24 2.7 1.8
17 25 1.8 1.8
19 30 3.6 3.6
22 31 3.6 7.2
24 37 8.1 9.9

Table 2: Numerical data for in Example 2

Input X;(0.1) Output Y¥;(0.1)

X; [.(0.1) [,(0.1) Vi [,,(0.1) [,,(0.1)
2 1.35 2.25 4 3.15 4.05
3.5 2.7 3.6 5.5 4.5 54
5.5 4.05 5.85 7.5 5.85 7.65
7 5.85 6.75 6.5 54 6.3
8.5 7.2 8.1 8.5 7.2 8.1
10.5 8.55 10.35 8 6.3 8.1
11 9.45 10.35 10.5 9 9.9
12.5 10.8 11.7 9.5 8.1 9

numbers and 0.1-level sets in the examples given in this section, but it is not difficult to analyze the
case of LR-fuzzy data, because it is also easy to obtain 0.1-level sets of LR-fuzzy numbers.

In the first example, explanatory variable (x;) is a crisp number and response variable (Y;) is an
asymmetric fuzzy number that have different left and right spreads.

Example 1. Table 1 shows that 0.1-level sets of triangular fuzzy numbers used by Chang and Lee
(1994) and Nasibov (2007).

The fuzzy regression model using Table 5.1 and MCR(0.1)-distance, which is proposed in Section
3,1s

7(0.1) = (4.198,3.778,2.461) + (1.272,0.026,0.151)x;. 5.1)

From Table 1, we can easily observe that the determinant of the matrix X’X is 2528 and all com-
ponents of (X'X )‘IX’Ly(a/) and (X'X )‘IX’Ry(a) are positive numbers. Since the data given in Table 1
satisfy the conditions of Theorem 1, we get the same estimated a-linear regression model as ¥(0.1)
in (5.1) although we use different methods, such as Euclidean distance method, the method using end
points of 0.1-level sets, and the method using the distance based on internally dividing points. This
result shows that there is no difference in the methods presented in Section 4 under some conditions.

Example 2. Table 2 shows the 0.1-level sets of asymmetric triangular fuzzy numbers suggested by
Sakawa and Yano (1992).
The regression parameters estimated by MCR(0.1)-distance and Euclidean distance are

P.(0.1) = ((3.171,0.629), (2.992,0.512), (3.432,0.527))
and

P.(0.1) = ((3.195,0.626), (2.948,0.519), (3.455,0.524)),
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Table 3: Numerical data for in Example 3

Y;(0.1) Xi1(0.1) Xi2(0.1)

i ly;(0.1) Xil X2 1y, (0.1)
41.8 10.53 6 4.2 0.81
50.4 11.43 7 6 0.9
49.9 10.89 8 5 0.99
53.9 11.07 9 4 0.9
57.7 8.82 10 3.6 0.54
60.5 7.38 11 3 0.63
69.1 7.83 12 3.5 0.81
74.3 6.03 13 5.5 0.81
84.2 5.76 14 4 0.54
90.6 7.02 15 8 1.53

respectively. Moreover, the regression parameters estimated by the methods presented in the previous
section are

Pp(0.1) = ((3.2,0.633),(2.936,0.529), (3.448,0.518)),
Pa(0.1) = ((3.199,0.626), (2.949, 0.519), (3.467, 0.522))

and
P.y(0.1) = ((3.199,0.626), (2.933,0.521), (3.445, 0.525)),

respectively. From the above result, we can conclude that the estimated parameters are different in
case the fuzzy regression model has asymmetric fuzzy input and output data. There is a difference
between the regression parameters estimated by the method using the mode and the distance of a-level
sets ISC(O. 1), P, (0.1), and P_(0. 1), and the method using the difference of the components of a-level
sets P,.(0.1) and P, »(0.1). This shows that we have to compare the efficiency of the different methods
when the sufficient conditions given in Theorem 2 are not satisfied.

In the following example, we consider the fuzzy regression models with symmetric fuzzy input
and output data.

Ezxample 3. Kao and Lin (2005) used the data presented in Table 3 to illustrate the entropy of the
fuzzy regression model.
We can easily observe that the determinant de(X'X) is not zero and all the components of (X;Xz)‘1

X,Ly(«) are positive, where X, = (,1 » ,1 ) Further, the regression parameters estimated by
: 12 n2
MCR(0.1)-distance are

P.(0.1) = ((3.667,4.916, 1.699), (7.924, 0.889)). (5.2)

We verified that the estimates presented in Section 4 P,.(0.1), If’ep(O.l),Isna(O.l), and P,(0.1) are
the same as P.(0.1) in (5.2) through simple computations using Matlab. This result coincides with
Theorem 2. So, if we want to construct the fuzzy regression models, it is sufficient to choose a special
method similar to Example 1.

The next example presents the use of restricted conditions in cases where the predicted regression
coefficients have negative spreads.

Ezxzample 4. Kim and Bishu (1998) introduced the least squares method using the mode and the
distance of a-level sets, and they used real data presented in Table 4 to estimate the fuzzy multiple
regression model.



622 Jin Hee Yoon, Hye Young Jung, Seung Hoe Choi

Table 4: Numerical data for in Example 4

Y;(0.1) Xi

i 1y, (0.1) Xil X2 Xi3
5.83 3.04 2 0 15.25
0.85 0.468 0 5 14.13
13.9 7.65 1.13 1.5 14.13
4 2.25 2 1.25 13.63
1.65 0.909 2.19 3.75 14.75
1.58 0.864 0.25 3.5 13.75
8.18 4.491 0.75 5.25 15.25
1.85 1.017 4.25 21 3.5

Although the design matrix X'X is nonsingular, the three components of the estimated coefficients
(X’X)‘IX’L),(Q) are negative, and only one component of the vector is positive. Hence, we should
consider the restricted conditions where the spreads are positive. The regression parameter estimated
by using the objective function (5.1) with constraints is

P.(0.1) = (-16.8,-1.1,-1.18, 1.856), (0,0, 0, 0.184)). (5.3)

We confirmed that if we apply the restricted conditions /x(a) > 0 and (@) > Ok = 0,...,p)
to every method presented in Section 4, the results are the same as P.(0.1) in (5.3) using Matlab
programming.

6. Conclusions

In this paper, we verified that if the a-linear regression model is used, we can express the relation
between the variables that cannot be expressed clearly due to the vagueness of the data. Then, we
introduced MCR(a)-distance based on the core and the radius of the a-level sets of predicted fuzzy
numbers and observed fuzzy numbers. We also proposed the sufficient conditions for algebraically
expressing the regression parameters of the a-linear regression model that are estimated by MCR(a)-
distance method. Further, we confirmed that the eight estimators are equivalent in the following
two cases: crisp input-fuzzy output and symmetric fuzzy input-output case. We verified that if the
data satisfy the sufficient conditions proposed in this paper, we can choose only one method to es-
timate the regression parameters. Although we used computer programs because the equations are
not algebraically solvable when we use MCR(«a)-distance method in the case of asymmetric fuzzy
input-output data. We confirmed this by the example that the results are different from those obtained
using the Euclidean method.

Further research is needed to find the condition for raising the efficiency of each estimation method
to the optimal level when the regression coefficients estimated by eight methods introduced in this
paper are not equivalent.
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