참고문헌
- Armstrong, R. D., Frome, E. L. and Kung, D. S. (1979). A revised simplex algorithm for the absolute deviation curve fitting problem, Communications in Statistics - Simulation and Computation, 8, 175-190. https://doi.org/10.1080/03610917908812113
- Barrodale, I. and Roberts, F. D. K. (1973). An improved algorithm for discrete linear approximation, SIAM Journal on Numerical Analysis, 10, 839-848. https://doi.org/10.1137/0710069
- Bassett, G. and Koenker, R. (1978). Asymptotic theory of least absolute error regression, Journal of the American Statistical Association, 73, 618-622. https://doi.org/10.2307/2286611
- Blattberg, R. and Sargent, T. (1971). Regression with non-Gaussian stable disturbances; some sampling results, Econometrica, 39, 501-510. https://doi.org/10.2307/1913262
- Bloomfield, P. and Steiger, W. (1980). Least absolute deviations curve-fitting, SIAM Journal on Scientific Computing, 1, 290-301. https://doi.org/10.1137/0901019
-
Chen, X. R. and Wu, Y. (1993). On a necessary condition for the consistency of the
$L_1$ -estimates in linear regression models, Communications in Statistics - Theory and Methods, 22, 631-639. https://doi.org/10.1080/03610929308831043 - Coleman, T. F. and Li, Y. (1992). A globally and quadratically convergent affine scaling method for linear problems, Mathematical Programming, 56, 189-222. https://doi.org/10.1007/BF01580899
- Dielman, T. E. (2005). Least absolute value regression: recent contributions, Journal of Statistical Computation and Simulation, 75, 263-286. https://doi.org/10.1080/0094965042000223680
- Dielman, T. E. and Pfaffenberger, R. (1982). LAV estimation in linear regression; a review, TIMS/Studies in the Management Sciences, 19, 31-52.
- Dielman, T. E. and Pfaffenberger, R. (1992). A further comparison of tests of hypothesis in LAV regression, Computational Statistics & Data Analysis, 14, 375-384. https://doi.org/10.1016/0167-9473(92)90046-I
-
Gentle, J. E., Narula, S. C. and Sposito, V. A. (1987). Algorithms for unconstrained
$L_1$ linear regression, In Statistical Data Analysis based on the$L_1$ -norm and Related Methods, edited by Y. Dodge, North-Holland, 83-94. - Hadi, A. S. (1994). A modification of a method for the detection of outliers in multivariate samples, Journal of the Royal Statistical Society, 56, 393-396.
- Hardin, J. and Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator, Computational Statistics & Data Analysis, 44, 625-638. https://doi.org/10.1016/S0167-9473(02)00280-3
-
Kim, B. Y. (1995). On the robustness of
$L_1$ -estimator in linear regression models, The Korean Communications in Statistics, 2, 277-287. -
Kim, B. Y. (2004). Resampling-based hypothesis test in
$L_1$ -regression, The Korean Communications in Statistics, 11, 643-655. https://doi.org/10.5351/CKSS.2004.11.3.643 -
Koenker, R. (1987). A comparison of asymptotic testing methods for
$L_1$ -regression, In Statistical Data Analysis based on the$L_1$ -norm and Related Methods, ed. by Y. Dodge. 287-298. - Montgomery, D. C., Peck, E. A. and Vining, G. G. (2006). Introduction to Linear Regression Analysis, John Wiley & Sons, New Jersey.
- Pfaffenberger, R. C. and Dinkel, J. J. (1978). Absolute deviations curve fitting; An alternative to least squares, In Contributions to Survey Sampling and Applied Statistics, edited by H. A. David, Academic Press, New York, 279-294.
- Rosenberg, B. and Carson, D. (1977). A simple approximation of the sampling distribution of least absolute residuals regression estimates, Communications in Statistics - Simulation and Computation, 6, 421-437. https://doi.org/10.1080/03610917708812055
- Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point, Mathematical Statistics and Applications, B, ed. by W. Grossmann, G. Pflug, I. Vincze, and W. Werz.
- Rousseeuw, P. J. and Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41, 212-223. https://doi.org/10.2307/1270566
-
Sherali, H., Skarpness, B. and Kim, B. Y. (1988). An assumption-free convergence analysis for a perturbation of the scaling algorithm for linear programs, with application to the
$L_1$ -estimation problem, Naval Research Logistics, 35, 473-492. https://doi.org/10.1002/1520-6750(198808)35:4<473::AID-NAV3220350403>3.0.CO;2-C - Woodruff, D. L. and Rocke, D. M. (1994). Computable robust estimation of multivariate location and shape in high dimension using compound estimators, Journal of the American Statistical Association, 89, 888-896. https://doi.org/10.2307/2290913