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Abstract
Developing a test for independence of random variables X and Y against the alternative has an important role

in statistical inference. Kochar and Gupta (1987) proposed a class of tests in view of Block and Basu (1974) model
and compared the powers for sample sizes n = 8, 12. In this paper, we evaluate Kochar and Gupta (1987) class
of tests for testing independence against quadrant dependence in absolutely continuous bivariate Farlie-Gambel-
Morgenstern distribution, via a simulation study for sample sizes n = 6, 8, 10, 12, 16 and 20. Furthermore, we
compare the power of the tests with that proposed by Güven and Kotz (2008) based on the asymptotic distribution
of the test statistics.

Keywords: Negative and positive quadrant dependence, Farlie-Gambel-Morgenstern distribution,
U-Statistics.

1. Introduction

Dependence relations between random variables is one of the most widely studied topics in probability
theory and statistics. Among them, our concentration is on positive and negative quadrant dependence
(PQD and NQD), that are the most useful concept of dependence. The notations of these concepts
are introduced by Lehmann (1966). Both PQD and NQD are qualitative forms of dependence and
indicated whether or not a pair of random variables exhibits positive or negative dependence. Thus,
for many purposes, in addition to the knowledge of the nature of dependence, it is also important
to test independence against quadrant dependence. Let (X,Y) be an absolutely continuous random
vector with joint distribution function F(x, y), survival function F̄(x, y) = P[X > x,Y > y], marginal
distribution functions F1(x) and F2(y) and survival functions F̄1(x) = P[X > x] and F̄2(y) = P[Y > y].
The random vector (X,Y) is said quadrant dependent, if F(x, y) , F1(x)F2(y) for all x, y ∈ R. In
particular, the random vector (X,Y) is said negative (positive) quadrant dependent, if F(x, y) ≤ (≥
)F1(x)F2(y) or equivalently F̄(x, y) ≤ (≥)F̄1(x)F̄2(y) for every x, y ∈ R. The dependence is strict if the
inequalities hold for at least one pair of (x, y).

Many statisticians are interested in finding the best test statistics for testing independence hypoth-
esis H0 : F(x, y) = F1(x)F2(y) against the alternative H1 : F(x, y) < F1(x)F2(y) (or H2 : F(x, y) >
F1(x)F2(y)) for all real numbers x, y. There are many tests available in the literature to test indepen-
dence against dependence, for example, Kendall’s tau test and Spearman’s rank correlation test (see
Gibbons, 1971; Koroljuk and Borovskich, 1994; Serfling, 1980). Kochar and Gupta (1987, 1990) pro-
posed some competitors of Kendall’s tau coefficient for testing independence against the alternative of
strictly positive quadrant dependence. Moreover, they studied simulation work to estimate the power
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of the tests for small sample of sizes in absolutely continuous bivariate exponential distribution based
on Block and Basu (1974) model. Shetty and Pandit (2003) considered a class of distribution-free
tests for testing independence against PQD, which is a generalization of Kochar and Gupta (1990)
results. Many papers such as Modarres (2007) and Hanagal and Kale (1991) are published in this
area. Güven and Kotz (2008) introduced a test of independence against quadrant dependence for a
pair of absolutely continuous random variables jointly distributed according to the generalized Farlie-
Gambel-Morgenstern(FGM) distribution and derived an approximation of the test statistic distribution
for large sample sizes.

In this paper, we apply in view of Kochar and Gupta (1987), the class of tests for testing indepen-
dence against H1 or H2 in absolutely continuous bivariate FGM distributions. Also, we obtain the best
test statistics for each samples of size n = 6, 8, 10, 12, 16 and 20 via comparing our simulation results.
Furthermore, we compute the power of the tests based on asymptotic distribution of the test statistics
and also compare our results with those of Güven and Kotz (2008) for sample sizes n = 10, 14, 16, 20
and 50 in special cases.

2. Preliminaries

Let k be a fixed integer and consider dk(x, y) = Fk(x, y)−Fk
1(x)Fk

2(y),∀x, y ∈ R (according to notations
of Kochar and Gupta (1987)). It is obvious that dk(x, y) < 0 (> 0) if H1(H2) is true and dk = 0 if H0 is
true, for all k ≥ 1, that means significant of independence against NQD (PQD).

The following index is given to measure the deviation between H0 and H1 (H2)

Dk =

∫
R2

dk(x, y)dF(x, y) = D1k − D2k,

where

P
[
max
1≤i≤k

Xi ≤ Xk+1, max
1≤i≤k

Yi ≤ Yk+1

]
=

∫
R2

P
[
max
1≤i≤k

Xi ≤ Xk+1, max
1≤i≤k

Yi ≤ Yk+1

∣∣∣∣Xk+1= x, Yk+1=y
]

dF(x, y)

=

∫
R2

P
[
max
1≤i≤k

Xi ≤ x, max
1≤i≤k

Yi ≤ y
∣∣∣∣Xk+1= x, Yk+1=y

]
dF(x, y)

=

∫
R2

P

 k∩
i=1

{Xi ≤ x,Yi ≤ y}
 dF(x, y)

=

∫
R2

Fk(x, y)dF(x, y) = D1k

and

D2k =

∫
R2

Fk
1(x)Fk

2(y)dF(x, y) =
∫

R2
F̄(x, y)dFk

1(y)dFk
2(y), ∀ k ≥ 1.

The equality of the right hand side of D2k can be obtained via∫
R2

Fk
1(x)Fk

2(y)dF(x, y) =
∫

R2

{∫ y

−∞

∫ x

−∞
dFk

1(t)dFk
2(s)

}
dF(x, y)

=

∫
R2

{∫ ∞

s

∫ ∞

t
dF(x, y)

}
dFk

1(t)dFk
2(s)

=

∫
R2

F̄(x, y)dFk
1(y)dFk

2(y).
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Note that (X1,Y1), . . . , (Xk+1,Yk+1) is a random sample of (X,Y) with common joint distribution func-
tion F(x, y). Now, it follows that under H0, D1k = D2k = 1/(k + 1)2 and under H1 we get,

D1k =

∫
R2

Fk(x, y)dF(x, y)

≤
∫

R2
Fk

1(x)Fk
2(y)dF(x, y)

=

∫
R2

F̄(x, y)dFk
1(y)dFk

2(y)

<

∫
R2

F̄1(x)F̄2(y)dFk
1(y)dFk

2(y) =
1

(k + 1)2 .

Similarly under H2, we get D1k > 1/(k + 1)2. So, if H1 is true then, D1k < D2k < 1/(k + 1)2 and if H2
is true then, D1k > D2k > 1/(k + 1)2 for all k ≥ 1.

We use U-Statistics estimator of D1k for testing H0 against H1 and H2. Consider the following
kernel according to Kochar and Gupta (1987):

hk+1[(X1,Y1), . . . , (Xk+1,Yk+1)]

=

{
1, (max{X1, . . . , Xk+1}, max{Y1, . . . , Yk+1}) belongs to the same pair of (X,Y),
0, otherwise.

Then, we get

Ehk+1 [(X1,Y1), . . . , (Xk+1,Yk+1)] = (k + 1)P
[
max
1≤i≤k

Xi ≤ Xk+1, max
1≤i≤k

Yi ≤ Yk+1

]
= (k + 1)D1k.

Therefore, the corresponding U-Statistics is

Un(k + 1) =
1

Ck+1
n

∑
A

hk+1[(Xi1 ,Yi1 ), . . . , (Xik+1 ,Yik+1 )],

where A is the set of all combinations of (k + 1) integers (i1, . . . , ik+1) that is chosen from (1, . . . , n)
and Ci

n = n!/{i!(n − i)!}.

Remark 1. The small values of Un(k + 1) are significant for testing H0 against H1 (NQD) and the
large values of Un(k + 1) are significant for testing H0 against H2 (PQD).

The exact distribution of Un(k + 1) can be simplified based on the following arguments,

Pn+1,k+1(u) =
1

n + 1

{
Pn,k+1

(
u −Ck

n

)
+ · · · + Pn,k+1

(
u −Ck+1

k

)
+ Pn,k+1(u − 1) + kPn,k+1(u)

}
,

where Pn,k+1(u) = PH0 [Un(k + 1) = u/Ck+1
n ] and Pk,k(0) = (k − 1)/k, Pk,k(1) = 1/k for n > k, (Kochar

and Gupta, 1987).
Now, we concentrate on asymptotic distribution of Un(k + 1) that is achieved based on asymptotic

theory of U-statistics via the the following theorem.
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Theorem 1. The asymptotic distribution of
√

n(Un(k + 1) − EUn(k + 1)) is normal with mean zero
and σ2

k+1 = (k + 1)2γ1 as n −→ ∞ where,

γ1 = Eψ2(X1, Y1) − E2Un(k + 1)

and

ψ(x1, y1) = Ehk+1
[
(x1, y1), (X2,Y2), . . . , (Xk+1, Yk+1)

]
.

Proof: See, Serfling (1980). �

Remark 2. Let (X1,Y1), . . . , (Xk+1,Yk+1) be a random sample of (X,Y) with common joint distribu-
tion function F(x, y), we get

ψ(x1, y1) = Ehk+1
[
(x1, y1), (X2,Y2), . . . , (Xk+1,Yk+1)

]
= Fk(x1, y1) + k · P [

max{x1, . . . , Xk} ≤ Xk+1, max{y1, . . . ,Yk} ≤ Yk+1
]

= Fk(x1, y1) + k · P
[
max
2≤i≤k

Xi ≤ Xk+1, max
2≤i≤k

Yi ≤ Yk+1, (Xk+1 ≥ x1,Yk+1 ≥ y1)
]

= Fk(x1, y1) + k
∫ ∞

y1

∫ ∞

x1

Fk−1(x, y)dF(x, y).

Thus, under H0, we obtain

ψ(x1, y1) = Fk
1(x1)Fk

2(y1) + k
∫ ∞

y1

∫ ∞

x1

Fk−1
1 (x)Fk−1

2 (y)dF1(x)dF2(y)

= Fk
1(x1)Fk

2(y1) +
1
k

[
1 − Fk

1(x1)
] [

1 − Fk
2(y1)

]
.

Since F1(X1) ∼ U(0, 1) and F2(Y1) ∼ U(0, 1), we have

EH0ψ(X1,Y1) = EFk
1(X1)EFk

2(Y1) +
1
k

E
[
1 − Fk

1(X1)
]

E
[
1 − Fk

2(Y1)
]

=
1

k + 1
= EH0 Un(k + 1)

and

EH0ψ
2(X1,Y1) = E

{
Fk

1(X1)Fk
2(Y1) +

1
k

[
1 − Fk

1(X1)
] [

1 − Fk
2(Y1)

]}2

=
5k2 + 4k + 1

(2k + 1)2(k + 1)2 .

So,

γ1 = EH0ψ
2(X1,Y1) − E2

H0
Un(k + 1) =

k2

(2k + 1)2(k + 1)2

and under H0, for large values of n, Lemma 5.2.1.A in Serfling (1980) implies that

n · Var{Un(k + 1)} = k2

(2k + 1)2 , as n→ ∞.
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Remark 3. The estimator of Un(2) is Kendall’s tau statistics, because

Un(2) =
1

C2
n

∑
A

h2[(Xi,Yi), (X j,Y j)],

where A = {(i, j) : (X j − Xi)(Y j − Yi) > 0}.

2.1. Bivariate FGM family

Morgenstern (1956), Farlie (1960) and Gumbel (1958) have discussed family of the bivariate distri-
butions of the form

F(x, y) = F1(x)F2(y)
[
1 + θF̄1(x)F̄2(y)

]
, −1 ≤ θ ≤ 1,

where F(x, y) is the joint distribution function of (X,Y) and F1 and F2 are marginal distribution func-
tions of X and Y , respectively. If the density function f (x, y) exists, then

f (x, y) = f1(x) f2(y)
[
1 + θ(1 − 2F1(x))(1 − 2F2(y))

]
and Sklar’s theorem implies that in FGM family for −1 ≤ θ ≤ 1

C(u, v) = uv(1 + θ(1 − u)(1 − v))

and

c(u, v) = 1 + θ(1 − 2u)(1 − 2v),

where C(u, v) and c(u, v) are copula distribution function and copula density function, respectively. For
more details and properties, see Mari and Kotz (2001). The following example shows an empirical
application of FGM family.

Example 1. Consider a two-component system such as desktop computer with both a CPU(central
processing unit) and a co-processor. Let X and Y denote the lifetimes of the components 1 and 2,
respectively. As is often the case in dealing with lifetimes, the components are related together. So the
amount of using the first component has negative (positive) effects on the lifetimes of the second one.
If X and Y having every common distribution, the dependence structure of them can be determined
with FGM family. Also according to the properties of copula function, the dependence structure of X
and Y is not dependent to the distribution of them.

2.2. Bivariate generalized FGM family

The bivariate FGM distribution has been modified by Bairamov and Kotz (2002) in order to increase
the dependence between the variables. The modified bivariate FGM distribution is known as gen-
eralized FGM distribution. If (X, Y) be a pair of absolutely continuous random variables with the
marginals F1(x) and F2(y), the generalized FGM distribution function of (X,Y) is

F(x, y) = F1(x)F2(y)
[
1 + θ

(
1 − F p

1 (x)
)q (

1 − F p
2 (y)

)q]
, p ≥ 1, q ≥ 1,

where θ is the dependence parameter. Note that assuming p = 1 and q = 1, lead to FGM distribution.
Let (Xi,Yi), i = 1, 2, . . . , n be a random sample from the generalized FGM distribution. Güven

and Kotz (2008) proposed an asymptotic test for testing independence (H0 : θ = 0) against quadrant
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Table 1: Estimated power for marginals U(0, 1) in FGM family for NQD cases

n U 5% Critical θ
Statistics Point −0.75 −0.5 −0.25 0.00

Un(2) 0.20000 0.06500 0.05087 0.03670 0.02833
6 Un(3) 0.05000 0.09400 0.07423 0.05635 0.04483

Un(4) 0.00000 0.00000 0.00000 0.00000 0.00000
Un(2) 0.25000 0.08665 0.06377 0.04612 0.03055

8 Un(3) 0.07143 0.10438 0.07773 0.05840 0.04057
Un(4) 0.01429 0.08948 0.066840 0.05185 0.03648
Un(2) 0.28889 0.12088 0.08252 0.05563 0.03533

10 Un(3) 0.10833 0.14963 0.10587 0.07493 0.04947
Un(4) 0.02857 0.13702 0.09875 0.07067 0.04747
Un(2) 0.31818 0.16100 0.10712 0.06935 0.04182

12 Un(3) 0.12727 0.16485 0.11208 0.07513 0.04630
Un(4) 0.04646 0.15923 0.10985 0.07547 0.04933
Un(2) 0.35000 0.21385 0.13947 0.08502 0.04505

16 Un(3) 0.16071 0.21093 0.14065 0.08870 0.0499
Un(4) 0.07308 0.18977 0.12935 0.08358 0.04977
Un(2) 0.36842 0.26012 0.16080 0.09133 0.04907

20 Un(3) 0.17982 0.24650 0.15653 0.08917 0.04937
Un(4) 0.09205 0.22492 0.14668 0.08648 0.04982

dependence (H1 : θ ≥ η or H2 : θ ≤ η) for this family, where η ∈ (0, 1). Moreover, they proved that
the generalized FGM family having monotone likelihood ratio in

ω(x, y) = (1 − xp)q−1 (1 − yp)q−1 (1 − (1 + pq)xp) (1 − (1 + pq)yp)

and so the test statistics are

φ(T ) =
{

1, if T ≥ c,
0, if T < c,

where T =
∏n

i=1(1 + ηω(Xi,Yi)). Also, they showed that under H0

√
n
(
T

1
n − µ(θ)

)
→ N

(
0, σ2(θ)

)
, as n→ ∞,

where µ(θ) = exp[E ln(1 + ηω(X,Y))] and σ2(θ) = µ2(θ)Var[ln(1 + ηω(X, Y))]. They obtained an
approximation to βn(θ) = Eφ(T ) for a finite sample given by βn(θ) = 1 − Φ(

√
n/σ(θ)[cα − µ(θ)]),

where θ ∈ [η, 1], cα = σ(0)/
√

n Φ−1(1 − α) + µ(0) and Φ(·) is the standard normal distribution
function.

3. Main Results

In this section, we consider the problem of test independence hypothesis against NQD (PQD) in
absolutely continuous bivariate FGM family via comparing the power of the tests based on simulation
results. We compute the 5% critical point of the tests Un(2), Un(3) and Un(4) and their empirical
powers based on 60000 repetitions in FGM family using R software version 2.10.1 (2009-12-14).
The critical points and empirical powers for NQD and PQD cases are summarized in Tables 1 and 2,
respectively. Also, the power of Un(k + 1), k = 1, 2, 3 and T based on their asymptotic distribution
for sample of sizes n = 10, 14, 16, 20, 50 with various values of η ∈ (0, 1) and θ ∈ [η, 1] at 5% level of
significance using R software version 2.10.1 (2009-12-14) is obtained. Figures 1, 2, 3, 4 and 5 show
the powers comparison for n = 10, 14, 16, 20, 50 and specific values of η with respect to θ.
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Table 2: Empirical power for marginals U(0, 1) in FGM family for PQD cases

n U 5% Critical θ
Statistics Point 0.00 0.25 0.5 0.75

Un(2) 0.80000 0.02830 0.03868 0.04925 0.06638
6 Un(3) 0.75000 0.04432 0.05785 0.07283 0.09302

Un(4) 0.73333 0.04165 0.05382 0.06737 0.08587
Un(2) 0.75000 0.03153 0.04582 0.06357 0.08867

8 Un(3) 0.66071 0.04345 0.06000 0.08215 0.10912
Un(4) 0.64286 0.04715 0.06203 0.08267 0.10352
Un(2) 0.71111 0.03555 0.05717 0.08242 0.12072

10 Un(3) 0.60833 0.04528 0.06720 0.09448 0.13237
Un(4) 0.57619 0.04873 0.06800 0.09183 0.12220
Un(2) 0.68182 0.04343 0.07073 0.10732 0.15847

12 Un(3) 0.57273 0.04870 0.07400 0.10747 0.15313
Un(4) 0.53333 0.04888 0.07005 0.09780 0.13435
Un(2) 0.65000 0.04785 0.08480 0.13753 0.21663

16 Un(3) 0.52679 0.04985 0.08557 0.13370 0.20487
Un(4) 0.47527 0.04982 0.07963 0.11767 0.17073
Un(2) 0.63158 0.04860 0.09345 0.16473 0.26412

20 Un(3) 0.50088 0.04958 0.09287 0.15742 0.24528
Un(4) 0.44211 0.04993 0.08417 0.13660 0.20378

3.1. Conclusions

The following results are observed:

• We applied the class of distribution-free tests (Kochar and Gupta, 1987) for testing independence
against quadrant dependence, so selecting various marginals in the FGM family give the same
results. We have done this for various of margins and observed our results are the same. Therefore,
we use FGM family for margins U(0, 1) and U(0, 1). Tables 1 and 2 show the empirical powers
of Un(i), i = 2, 3, 4 for marginals U(0, 1) and U(0, 1) in NQD and PQD cases, respectively.

Comparing the powers of the tests Un(i), i = 2, 3, 4 based on simulation study in PQD case (0 < θ ≤ 1)
and NQD (−1 ≤ θ < 0) indicates that:

• For PQD (θ = 0.25, 0.5, 0.75) when n = 6, test Un(3) is a good competitor of tests Un(2) and
Un(4). When n = 8, Un(4) is a good competitor of the other tests except for θ = 0.75 that Un(3) is
a good competitor test, note that the power of Un(3) is very close to the corresponding value due
to Un(4). n = 10, 12 lead to Un(3) is a good competitor of tests Un(2) and Un(4) except for n = 12
in θ = 0.75, Un(2) and for n = 10 in θ = 0.25, Un(4) are better than other tests. Noting that in
these cases the power of the best test statistics is very close to those of their competitors. When
n = 16, 20, Un(2) test is a good competitor of Un(3) and Un(4), except when n = 16 for θ = 0.25
that Un(3) is a good competitor but also its power test values are very close to the corresponding
values due to Un(2).

• In NQD cases, for θ = −0.75, −0.5, −0.25, when n = 6, 8, 10, 12, Un(3) test is a good competitor
of Un(2) and Un(4) tests, except when n = 12, for θ = −0.25 that Un(4) is a good competitor
test, note that the power test value of Un(4) is very close to the corresponding value due to Un(3).
When n = 16, 20, Un(2) is a good competitor of Un(3) and Un(4) tests, except when n = 16 the
test Un(3) is better than Un(2) and Un(4) for θ = −0.5,−0.25.

• Comparison of our results with results of Güven and Kotz (2008) based on asymptotic distribution
of T in FGM family for p = q = 1, leads to the following results:



500 Amini, M., Jabbari, H., Mohtashami Borzadaran, G.R., Azadbakhsh, M.

n=10 and \eta= -0.7

\theta

-.71-.75-.79-.83-.87-.91-.95-.99

.971173

.743810

.516447

.289084

.061721

 

n=10 and \eta= -0.4

\theta

-.43-.47-.51-.55-.59-.63-.67-.71-.75-.79-.83-.87-.91-.95-.99

.971173

.743810

.516447

.289084

.061721

 

n=10 and \eta= -0.1

\theta

-.11

-.15

-.19

-.23

-.27

-.31

-.35

-.39

-.43

-.47

-.51

-.55

-.59

-.63

-.67

-.71

-.75

-.79

-.83

-.87

-.91

-.95

-.99

.971173

.743810

.516447

.289084

.061721

 

n=10 and \eta= +0.1

\theta

.98

.94

.90

.86

.82

.78

.74

.70

.66

.62

.58

.54

.50

.46

.42

.38

.34

.30

.26

.22

.18

.14

.10

.971173

.743810

.516447

.289084

.061721

 

n=10 and \eta= +0.4

\theta

.96.92.88.84.80.76.72.68.64.60.56.52.48.44.40

.971173

.743810

.516447

.289084

.061721

 

n=10 and \eta= +0.7

\theta

.98.94.90.86.82.78.74.70

.971173

.743810

.516447

.289084

.061721

 

Figure 1. The power of )2(
n

U , )3(
n

U , )4(
n

U  and T with respect to q  for 10=n  and 

7.0,4.0,1.0,1.0,4.0,7.0 +++---=h . 

In all graphs , ,  and show the power of )2(
n

U , )3(
n

U , )4(
n

U  and T , respectively. 

a) Figures 1, 2, 3 and 4 (n = 10, 14, 16, 20) show that the power of the tests based on Un(i), i =
2, 3, 4 are greater than T in NQD and PQD cases. Figure 5 (n = 50) shows that the power of T is
better than others, when |η| has a large value. Also, we observe that when |η| is not large and θ is
decreased, Un(i), i = 2, 3, 4 are better than T .

b) The tests Un(i), i = 2, 3, 4 for small samples less than 50 are better than the asymptotic test
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Figure 2. The power of )2(
n

U , )3(
n

U , )4(
n

U  and T with respect to q  for 14=n  and 

7.0,4.0,1.0,1.0,4.0,7.0 +++---=h . 

In all graphs , ,  and show the power of )2(
n

U , )3(
n

U , )4(
n

U  and T , respectively. 

of Güven and Kotz (2008). Moreover for large samples (n ≥ 50), our results show that the tests
Un(i), i = 2, 3, 4 are better than the test of Güven and Kotz (2008), when |θ| is decreased and |η| is
not large.

• Finally, Tables 1 and 2 and Figures 1, 2, 3, 4 and 5 show that:
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Figure 3. The power of )2(
n

U , )3(
n

U , )4(
n

U  and T with respect to q  for 16=n  and 

7.0,4.0,1.0,1.0,4.0,7.0 +++---=h . 

In all graphs  , ,  and show the power of )2(
n

U , )3(
n

U , )4(
n

U  and T , respectively. 

For small samples, Un(2) is not a good statistics for testing independence in both NQD and PQD
cases.

For large samples, Un(3) or Un(4) is not a good statistics for testing independence in both NQD
and PQD cases.
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Figure 4. The power of )2(
n

U , )3(
n

U , )4(
n

U  and T with respect to q  for 20=n  and 

7.0,4.0,1.0,1.0,4.0,7.0 +++---=h . 

In all graphs  , ,  and show the power of )2(
n

U , )3(
n

U , )4(
n

U  and T , respectively. 

Since for computing Un(4) or Un(3) we used the fourth or triangle combinations of the observation
respectively, the above results are satisfied. So for large samples, the power of Un(2) and its
competitors are the same for evaluating the dependence between two random variables.

• Applying these methods for other bivariate distributions is to be done in a future study. Also, the
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Figure 5. The power of )2(
n

U , )3(
n

U , )4(
n

U  and T with respect to q  for 50=n  and 

7.0,4.0,1.0,1.0,4.0,7.0 +++---=h . 

In all graphs  , ,  and show the power of )2(
n

U , )3(
n

U , )4(
n

U  and T , respectively. 

tests Un(i) for k > 3 is another open problem that can be solve in the future.
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