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Abstract
This study provides the explicit computation of the ruin probability of a Le¢vy process on finite time horizon
in Theorem 1 with the help of a fluctuation identity. This paper also gives the numerical results of the ruin
probability in Variance Gamma(VG) and Normal Inverse Gaussian(NIG) models as illustrations. Besides, the
paths of VG and NIG processes are simulated using the same parameter values as in Madan et al. (1998).
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1. Introduction

Let X = {X, : t > 0}, Xo = 0, be a Lévy process defined on (Q, F, P), with triplet (y, o2, IIy), TIx
being the Lévy measure of X. For x € R, denote by P,(-) the law of X when it is started at x and
write simply Py = P. The characteristic function of X is given by the Lévy-Khintchine representation,
E(e'%%) = Y@ where for0 e Rand r > 0,

. 0—292 i0x :
W) = i0y - —— + o (€™ = 1 = i0x1 1)) Tx(dx). (1.1)

In a number of numerical simulations and theoretical calculations for specific choices of Lévy pro-
cesses, various authors have found that the stochastic models, viz, Insurance risk theory and Amer-
ican put optimal problem are solved as for the case that X is a scaled Brownian motion with drifts
and jumps. Various recent studies of insurance risk processes and associated random walks and Lévy
processes have paid particular attention to the non-Cramér case, when upward jumps of the process
may be very large. Such models are now thought to be quite realistic, especially in view of a recent
tendency to large-claim events in the insurance industry. The occurrence of the claims in such a model
is described by a point process and the amounts of money to be paid by the company at each claim
by a sequence of random variables. The company receives a certain amount of premium to cover its
liability. The company is assumed to have a certain initial capital x at its disposal.

To give some intuition for the general framework of this paper, we briefly recall the classical
insurance risk model. In the classical model, the claims arriving within the interval (0, ¢], > 0, are
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modeled as a compound Poisson process, yielding the risk process

N,
Ut:x+yt—ZY,~, t>0, (1.2)

i=1

where x is the initial risk capital and y > 0 is the premium rate. Denote by F the claim size distribution
function, that is, the distribution function of the independent and identically distributed almost surely
positive random variables Y;, assumed to have mean u > 0. Let 4 > 0 be the intensity of the Poisson
process.

Under this scenario, one important problem in insurance risk theory is to investigate the “ruin
probability” i.e., the probability that the risk business ever becomes negative. The probability of ruin
is then

1
Y; —yt > x, forsome >0
i=1

=(=p) ) Py, (1.3)
n=1

N,
P(U, <0forsomet>0)=P

where p = Au/y < 1, and Equation (1.3) follows from ladder height analysis. The integrated tail
distribution F;(u) := 1/u f(o y F(y)dy, u > 0, is the distribution function associated with the increasing

ladder height process of the process X; = Z?L’  Yi—yt, t 2 0,and ﬁ is the tail of its n-fold convolution.

This corresponds to an insurance risk model with premiums and other income producing a down-
ward drift in X, while claims are represented by positive jumps: see Grandell (1991). Thus “ruin”
occurs at a positive level x, if this is reached by X. In the finite time horizon we will show the ruin
probability of the process above a level x. We assume Lévy process X drifts to —co almost surely. In
this paper our aim is to estimate the limiting ruin probability of an infinite time horizon of quantities
of interest in insurance risk analysis, and to consider the explicit ruin probability of finite time horizon
in Theorem 1. Specific illustrations of the theoretical results are given for special cases such as VG
and NIG models. In this analysis we will follow the notation of Park and Maller (2008).

2. Preliminaries

The fluctuation theory provides a number of formulas for the distribution of certain random variables
related to extrema of a Lévy process. An important tool in the study of the fluctuations of Lévy
processes is the following Wiener-Hopf factorization which we review for convenience. For a more
detailed account, the reader is referred to Section 2 of VI in Bertoin (1996). Assume that g > 0. Let 7,
be an exponentially distributed random time with parameter g, which is independent of Lévy process.
We have that YTq and Y,q - X, are independent where X, = SUPp<,<; Xs and 7, is an independent
exponentially distributed random variable with parameter g. As a consequence, for 6 € R,

q

with

yi0) = E[e ] and w;(0) = e )| < B[],
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where X, = info<,< X;.

We now introduce some basic notations, definitions and results, which consist of some renewal-
theoretic aspects of Lévy processes. Our results can be seen as adding to an understanding of renewal
and fluctuation properties of Lévy processes which drift to —co. Define the ascending ladder height
subordinator of X by (H,);»0, which is defective under the assumption lim,,, X; = —o0 a.s. (which
we will always assume in this paper), taking the value +oco once X exceeds its all-time maximum. The
(proper) descending ladder height subordinator is denoted by (H)is0 taking positive values as Doney
and Kyprianou (2006). Denote by {(L;',H,) :t >0} and {(Z;',ﬁ,) : t > 0} the bivariate subordina-
tors representing the increasing and decreasing ladder processes. Associated with the increasing and
decreasing ladder processes are the bivariate renewal measures defined by

V(dx, ds) = f dt- P(H, € dx, L' € ds), 2.1
(0,00)

and taking Laplace transforms shows that

1
f f e P Y(dx,ds) = ——, for p,r>0, 2.2
(0.00) J(0.00) «(p,7)

where we denote by «(p, r) their joint Laplace exponents such that

k(0,r) =g +cr+ f (1 — ™™g (dx), (2.3)
(0,00)

where H is a nondefective process and H is obtained from H by exponential killing with rate ¢ > 0
so that ¢ > 0 if and only if lim, e X; = —co, ¢ > 0 is the drift of H and Iy is its jump measure.
We denote the following marginal measure of V(-,-) by the (defective, when lim,_,., X; = —c0 a.s.)

process H:
V(dx) := V(dx, [0, 00)) = f P(H, € dx)e"?dt, for x> 0. 2.4)

(0,00)

Similar notation will also be used for ;‘)(~, -). We denote the Lévy measure of H by Iy, and
similarly for H. The tails of [Ty are

Ty(x) = Mx{(x,00)},  Tye(x) = My{(—00, —x)}
and
My(x) = My(x) + (x), x>0,

with similar notations ﬁ«H(x) and ﬁﬁ(x) for H and H.
For our non-Cramér scenario, it will be necessary to introduce some more notation. For a > 0, we
shall say that a distribution F on [0, c0) with tail F belongs to the class L@, if

. F(u - X)
lim — =
u—0o F(M)

eax

, for x e (—o0, ). (2.5)

Tail functions F such that f(log u) is regularly varying with index —a, @ > 0, as 4 — oo, are in
L@: see Bingham et al. (1987), Embrechts et al. (1979) and Kliippelberg (1989). With * denoting
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convolution, a distribution F is said to be convolution equivalent, i.e., in the class S, a > 0, if
F € L9 and, in addition,

T
tim 9~ 25 (F) < oo, (2.6)
X—00 F(.X)

where 6,(F) := f(o ) e™*F(dx). The parameter « is referred to as the index of the class. When a = 0,

S := 8O is the class of subexponential distributions.
At this stage, we bring in the convolution equivalent assumptions. We assume the same conditions
as in Park and Maller (2008), namely, that

ll:r(r)lo X, =—c0 as. and e 95,(H) < 1. 2.7)
Throughout the entire paper the relationship of the above assumption is mentioned well in Section
4 of Kliippelberg et al. (2004). Assume that the process is not spectrally negative, in fact, assume
Ix{(x, 0)} > 0 for all x > 0. The second assumption means that the measure is in £® or S if this
is true for the corresponding distribution tail. In fact, our main assumption throughout this section
will be Ty, € 8@, for a specified @ > 0.

3. Ruin Probability

We consider in this section the estimation of limiting ruin probability of an infinite time horizon and
the explicit ruin probability of a finite time horizon. Park and Maller (2008) and Kliippelberg et al.
(2004) introduced the limiting probability when causes the ruin as follows:

lim P(t, < o) = A

4 fw.
s @ togo, oy "

To a fixed level x € R we associate the first strict passage time 7, (resp. 7,-) above (resp. below)
x, that is,
T,=inf{t >0: X, >x} and 7, =inf{r>0: X, < —x}.

Theorem 1. Let 7, be an exponentially distributed random time with parameter q > 0, which is
independent of the Lévy process. We then obtain for a > 0 and x > 0,

E (e‘ar—VI[TX@o]) =F (I[Xm”‘]) 3.1
and |
P(r,>1) = -«q, 0)f P(H, € dy). (3.2)
q (0,x]

Proof: Substituting 8 = 0 to Lemma 1 of Alili and Kyprianou (2005), we have easily the result (3.1).
Assume that @, x > 0 and note that E[1 e >X)] = E[l(z,<r,]. By taking Laplace transforms of both
g :

sides of (3.1) and using Fubini’s theorem, we can write, for 4 > 0,

f eVE (€™ 1z <o) dx = f eVE (1[} >x])du
(0,00) (0,00) i
1 -
:Zf(;,w)(l—e )P (X, € dy).
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Therefore we have

Af e p (Tx < ‘rq) dx=1-E (e_/&’ﬂ).
(0,00)

From Bertoin (1996), p.172, we have

/lf eMp (TX > Tq) du = /lf e (f P(r, > t)qe_q’dt) dx
(0,00) (0,00) (0,00)

k(q,0)

= . (3.3)
k(q, )
Hence for every A > 0, we obtain from (2.2) and (3.3)
f e ( f P(t, > t)qe_q’dt) dx = f e (k(g,0)V(x)) dx. (3.4)
(0,00) (0,00) (0,00)
By the uniqueness of Laplace transform, we then get (3.2) as follows:
f P(t, > Hge™¥'dt = k(g,0)V(x).
(0,00)

O

By replacing X by —X in the previous theorem, we get the following result.

Corollary 1. Forall @ > 0 and x > 0, we have

E(e™™ Ipr, wo)) = E (1[& H]). (3.5)

Next we consider spectrally positive processes. We assume that X drifts to —oco a.s., and the
downward ladder height process is simply a negative linear drift, H, = -1, T (u) = f\ cli00) ﬁ;(y)dy <
oo, foru > 0, E|X| < co and EX; < 0. Suppose that X has Laplace exponent ¢(6) for 6 € R as follows:
E(™) = ¢*@" We assume that ﬁ; € 8@, for @ > 0. We know that ¢ and ¥ are related through the
identity ¢(0) = —¥(—i6f): see Bertoin (1996), Chapter VII and Sato (1999). Taking the fact that the
downward ladder height process is a linear drift, we can identify ¢ as follows: g = limg_,o ¢(—6)/6.
Note that ¢ = —¢’(0—) = |EX|| < o0, and ¢ — log 6,(H) = —¢(@)/a, for @ > 0. It is known that g = 0
and V(dx) = —dx, when X has bounded variation and drifts to minus infinity from Kliippelberg et al.
(2004).

Corollary 2. Suppose that X is spectrally positive, drifts to —co a.s., satisfies the assumption (2.7)
for a given a > 0, and has ¢(a) < 0. Then we have:

2
0% —+
lim P(t, < o0) = |EX]| (—) f I, (y)dy. (3.6)
X0 (b(CL/) yel[u,00) X
For the special case of jump diffusion process, we have

2.2

p(@) = —ay+ ZL 4 f (e = 1) My(dy),
2 ve[0.00)

which is finite by our assumption. Take @ > 0. We can calculate easily that assuming p = ud/y < 1,

ola 1
- - (™ — DIx(dy)|.

-l
EXi|=y(1-p), 2@ 7(1
@ 2y @Y Jye0,0)
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4. Numerical Study

We now give some numerical illustrations of the limiting behavior of distributions of quantities inter-
ested in Lévy insurance risk processes. We conclude this section with some examples, all of which
have the shape that X is spectrally positive; namely, we assume ﬁ; = 0. This case is very tractable
and allows us to derive quite explicit expressions which generalize well-known results in collective
risk theory. It is the case of most direct interest in insurance applications.

The numerical study is illustrated for the Variance Gamma(VG) and Normal inverse Gaussian(NIG)
models. For that purpose the parameters of our VG and NIG models are obtained using Fourier trans-
forms in Madan et al. (1998), where the data for their study were obtained from the Financial Futures
Institute in Washinton D.C. and include all time stamped transaction option prices from January 1992
to September 1994. For parameter estimation, the data employed was the 691 daily observations of
log spot price relatives covering the period from January 1992 to September 1994. Using all of the
option prices available for each week, they also estimated the parameter values for VG models on a
weekly basis. The details are given by Section 5 of Madan et al. (1998).

Suppose that X; is of the form

VG; = oWy +vg(t;v), 120, 4.1

where W, is a standard Brownian motion, and g(¢;v) is a Gamma process. Madan et al. (1998)
introduce this process defined by a Brownian motion with drift y and volatility o, time-changed by
an increasing Gamma process with unit mean and variance v. From three representations of the Lévy
measure for VG process in Madan et al. (1998), we may choose a measure changed by a constant
relative risk utility function as in Madan and Milne (1991). Throughout the Variance Gamma model,
Lévy density can be expressed as

1 [2 2
IIx(dx) = v_xl exp [—? 5 + 7—2] . exp(y—;c)dx, —00 < X < 00, “4.2)
o o

The parameters we use for the VG model are the same as used in Madan et al. (1998). In Maller
et al. (2006) the parameters for NIG model were obtained by matching its first four moments to
those of the VG model. Under the VG model, the parameters we use in (4.2) are estimated as in
Maller et al. (2006): v = 0.20, y = —0.14 and o = 0.12. These parameters we chosen so that
Y(1) = 0.10 for our purpose. Simulated results of the path of VG process, a pure jump process of
finite variation, with infinitely many jumps are given by Figure 1. This process is constructed by
means of “Brownian subordinator” by evaluating the Brownian motion with drift at random times
given by a Gamma process. There are three basic controls: the volatility and drift of the Brownian
motion and the variance of the Gamma process. These parameters allow the control of the skewness
and kurtosis of the claim distribution in addition to mean and variance. Figure 1 presents the path of
simulating VG as the Gamma time-changed Brownian motion for sequentially generating VG sample
paths on [0, 7] at time points 0 = #y < #; < --- < ty—; < ty = T, where the time spacings At;,
i =1,...,N are given as inputs, along with VG parameters. For more information on efficiently
generating samples from VG, see Fishman (1996).

Define T, the first time that a Brownian motion with drift v reaches the positive level 1. We
consider the Brownian motion with drift y and volatility o computed at this Gaussian time. Then we
can define the NIG process by

NIG; = O-WT(,;V) + ’)/T(r;y), t>0. (43)
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o
g A+ ‘ ™ o

VG Process with sigma=1.5, nu=0.1, gamma=-0.14 VG Process with sigma=0.5, nu=0.01, gamma=-0.14
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Figure 1: Infinite activity Lévy processes: Variance Gamma VG, = oWy, + yg(t;v), where W, is SBM and
g(t;v) is a Gamma process

< <
— 7 2 A
NIG Process with sigma=0.5, nu=0.2, gamma=-0.14 NIG Process with sigma=0.5, nu=0.01, gamma=-0.14
v - e
o .~ o
"
o~
in ot -
_— & =
bl ™ S
o ~ ) o
P e A =T
et
] 2
IS S 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

@ (b)
Figure 2: Infinite activity Lévy processes: Normal Inverse Gaussian NIG, = o Wr,,, + ¥T (1)

The Lévy measure for the NIG model can be expressed as

ow K (w|x|)
Myig(dx) = — exp (Bx) ————, (4.4)
T [ x]
where 8 = y/0?, w = \v2/o? +y%/o*, § = o and K; is the modified Bessel function with index 1

such that K;(x) = x/2 ft c(0.00) SXP(=( + x2/41)t~2dt. In Maller et al. (2006), they set w = 28.421,
B =—15.086 and 6 = 0.317. In Figure 2, the NIG process is in many ways similar to the VG process
due to Madan and Seneta (1990). This simulation result shows a path of the NIG process at various
moments in time. The NIG process is a pure-jump process with infinite variation. In the case of the
VG process the time change process is the Gamma process; in the case of a NIG process it is an inverse
Gamma process. Both processes are pure-jump Lévy processes (they have no continuous Brownian

component), but they differ in the nature of jumps: the VG process has jumps of finite variation while
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Table 1: lim,_,, P(t, < o) for @ = 0.1, 1.0, 2.0.

Initial capitals VG Model NIG Model
X a=0.1 a=10 a=20 a=0.1 a=10 a=20
5 0.994886 0.975121 0.948513 0.999985 0.990167 0.968494
10 0.779851 0.667903 0.649678 0.999736 0.980240 0.958785
50 0.105767 0.070577 0.068651 0.920581 0.902629 0.882873
100 0.010806 0.006737 0.006553 0.826228 0.810116 0.792384
300 0.000002 0.000001 0.000001 0.499817 0.490070 0.479344
900 0.000000 0.000000 0.000000 0.010200 0.010000 0.009783
1000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

the variation of the NIG process is infinite. The parameters are the drift and volatility of the time-
changed Brownian process and the variance of the time-change process. Program language C** and
other commercial software S-plus are generally used for visualizations.

Now we consider the limiting distribution of ruin on infinite time horizon as numerical illustra-
tions. Using the simulating results of VG and NIG processes in Figures 1 and 2, we can estimate
the expected value of X;. Then we will set up that the intensity of the Poisson process in classical
risk process (1.2) is 4 = 0.3, and the mean of claim size is u = 0.3. Also, we adjust a range of the
initial capital level x to a range (0, 1000) which means that 1000 is an infinity level. Let us proceed to
examine the limiting behavior the ruin probability of (3.6) as x — oo for VG and NIG models in more
detail in Table 1. According to the index @ and two kinds of models, the limiting behavior of the ruin
probability looks like a different shape. The steep decreasing slope as x — oo means that the much
more large claims occur and the distribution of claim has the more heavy-tailedness distribution class.
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