DOI QR코드

DOI QR Code

Rapid molecular authentication of three medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multiflorum (Fallopia multiflorum), by the development of RAPD-derived SCAR markers and multiplex-PCR

  • Moon, Byeong-Cheol (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Choo, Byung-Kil (Department of Crop Agriculture and Life Science, Chonbuk National University) ;
  • Cheon, Myeong-Sook (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Yoon, Tae-Sook (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Ji, Yun-Ui (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Kim, Bo-Bae (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Lee, A-Young (Center of Herbal Resources Research, Korea Institute of Oriental Medicine) ;
  • Kim, Ho-Kyoung (Center of Herbal Resources Research, Korea Institute of Oriental Medicine)
  • Received : 2009.06.19
  • Accepted : 2009.08.29
  • Published : 2010.03.30

Abstract

Definitive identification of original plant species is important for standardizing herbal medicine. The herbal medicines Cynanchi Wilfordii Radix (Baekshuoh in Korean and Beishuwu in Chinese) and Polygoni Multiflori Radix (Hashuoh in Korean and Heshuwu in Chinese) are often misidentified in the Korean herbal market due to morphological similarities and similar names. Therefore, we developed a reliable molecular marker for the identification of Cynanchi Wilfordii Radix and Polygoni Multiflori Radix. We used random amplified polymorphic DNA (RAPD) analysis of three plant species, Polygoni multiflorum, Cynanchum wilfordii, and Cynanchum auriculatum, to obtain several species-specific RAPD amplicons. From nucleotide sequences of these RAPD amplicons, we developed six sequence characterized amplification region (SCAR) markers for distinguishing Polygoni Multiflori Radix and Cynanchi Wilfordii Radix. Furthermore, we established SCAR markers for the simultaneous discrimination of the three species within a single reaction by using multiplex-PCR. These SCAR markers can be used for efficient and rapid authentication of these closely related species, and will be useful for preventing the distribution of adulterants.

Keywords

References

  1. Agrawal V, Sharma K, Gupta S, Kumar R, Prasad M (2007) Identification of sex in Simmondsia Chinensis (Jojoba) using RAPD markers. Plant Biotechnol Rep 1:207-210 https://doi.org/10.1007/s11816-007-0031-6
  2. China Pharmacopoeia Committee (2005) Pharmacopoeia of the People's Republic of China, Part 1. China Chemical Industry Press, Beijing, pp 122-123
  3. Choo BK, Moon BC, Ji Y, Kim BB, Choi G, Yoon T, Kim HK (2009) Development of SCAR markers for the discrimination of three species of medicinal plants, Angelica decursiva (Peucedanum decursivum). Peucedanum praeruptorum and Anthricus sylvestris, based on the ITS sequence and RAPD. Biol Pharm Bull 32:24-30 https://doi.org/10.1248/bpb.32.24
  4. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechnique 23:504-511
  5. Hosokawa K, Minami M, Kawahara K, Nakamura I, Shibata T (2000) Discrimination among three species of medicinal Scutellaria plants using RAPD markers. Planta Med 66:270-272 https://doi.org/10.1055/s-2000-8557
  6. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159-165
  7. Korea Food and Drug Administration (2008) The 9th Korean Herbal Pharmacopoeia, vol 255. Korea Food and Drug Administration, Seoul, pp 107-1088
  8. Lee MY, Doh EJ, Park CH, Kim YH, Kim ES, Ko BS, Oh SE (2006) Development of SCAR marker for discrimination of Artemisia princeps and A. argyi from other Artemisia herbs. Biol Pharm Bull 29:629-633 https://doi.org/10.1248/bpb.29.629
  9. Ministry of Health, Labour and Welfare (2006) The 15th Japanese Pharmacopoeia, Ministry of Health, Labour and Welfare, Tokyo
  10. Paran I, Michelmore RW (1993) Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985-993
  11. Penner GA, Bush A, Wise R, Kim W, Domier L, Kasha K, Laroche A, Scoles G, Molnar SJ, Fedak G (1993) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl 2:341-345 https://doi.org/10.1101/gr.2.4.341
  12. Shcher NJ, Carles MC (2008) Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Med 74:603-623 https://doi.org/10.1055/s-2008-1074517
  13. Song KS, Shin CG, Ju YS (2004) External and internal morphological standard of original plants and herbal states in Polygoni Multiflori and Cynanchi Wilfordii Radix. Kor J Herbol 19:55-66
  14. The Health Department and National Chinese Medicine Management Office (1999) Zhong Hua Ben Cao. Shanghai Science Technology Publication, Sanghai, vol 6, pp 333-337
  15. Wang J, Ha WY, Ngan FN, But PP, Shaw PC (2001) Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med 67:781-783 https://doi.org/10.1055/s-2001-18340
  16. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531-6535 https://doi.org/10.1093/nar/18.22.6531
  17. Yan P, Pang QH, Jiao XW, Zhao X, Shen YJ, Zhao SJ (2008) Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences. Planta Med 74:1504-1509 https://doi.org/10.1055/s-2008-1081330
  18. Zhang YB, Shaw PC, Sze CW, Wang ZT, Tong YJ (2007) Molecular authentication of chinese herbal materials. Food Drug Anal 15:1-9

Cited by

  1. Development of SCAR Markers for the Authentication of Acori Rhizoma Based on the Analysis of RAPD and Multiplex-PCR vol.19, pp.3, 2010, https://doi.org/10.7783/kjmcs.2011.19.3.162
  2. Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species vol.10, pp.3, 2010, https://doi.org/10.4238/vol10-3gmr1083
  3. Chrysanthemum Biotechnology:Quo vadis? vol.32, pp.1, 2013, https://doi.org/10.1080/07352689.2012.696461
  4. 白首烏와 耳葉牛皮消의 내부형태 감별기준 vol.30, pp.4, 2010, https://doi.org/10.6116/kjh.2015.30.4.65.
  5. Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multi vol.43, pp.4, 2016, https://doi.org/10.1007/s11033-016-3959-1
  6. Development of molecular markers for authentication of the medicinal plant species Patrinia by random amplified polymorphic DNA (RAPD) analysis and multiplex-PCR vol.57, pp.2, 2016, https://doi.org/10.1007/s13580-016-0064-2
  7. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae) vol.27, pp.5, 2010, https://doi.org/10.3109/19401736.2015.1079887
  8. The complete chloroplast genome sequence of Cynanchum auriculatum Royle ex Wight (Apocynaceae) vol.27, pp.6, 2016, https://doi.org/10.3109/19401736.2015.1101557
  9. Molecular marker analysis of Cynanchum wilfordii and C. auriculatum using the simple ARMS-PCR method with mismatched primers vol.11, pp.2, 2017, https://doi.org/10.1007/s11816-017-0432-0
  10. Inspecting the True Identity of Herbal Materials from Cynanchum Using ITS2 Barcode vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.01945
  11. Development of cpDNA markers for discrimination between Cynanchum wilfordii and Cynanchum auriculatum and their application in commercial C. wilfordii food products vol.60, pp.1, 2010, https://doi.org/10.1007/s13765-017-0252-5
  12. Molecular Discrimination of Cynanchum wilfordii and Cynanchum auriculatum by InDel Markers of Chloroplast DNA vol.23, pp.6, 2010, https://doi.org/10.3390/molecules23061337
  13. Molecular characterization of soybean (glycine max) accessions from the international collection of the plant gene resources of Canada: germplasm identification vol.35, pp.5, 2010, https://doi.org/10.1080/15427528.2021.1875279
  14. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects vol.26, pp.23, 2010, https://doi.org/10.3390/molecules26237065