
A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   51

A Localized Software-based Approach for

Fault-Tolerant Ethernet (LSFTE)

Huy Thao Vu*, Se Mog Kim*, Anh Hoang Pham*, Jong Myung Rhee**

ABSTRACT

Nowadays, there are various networked systems with many computers. In most networked

systems, a crucial objective is to keep transmitting and/or receiving data continuously even though

failures exist. How can one make a computer continue transmitting and/or receiving data even

when there are some errors on a link? Fault-Tolerant Ethernet (FTE) can be a solution to this

question. In this paper, we propose a Localized Software-based Fault-Tolerant Ethernet (LSFTE).

Our new approach fulfills the general FTE requirements. It takes advantage of redundant cable

lines to maintain communication in a faulty environment. A software layer, which uses a simple

and effective algorithm, is added above the LAN card driver software to detect and overcome

faults. For our approach, there is no need to change the existing hardware or the end-use

interfaces. Furthermore, the fault-detection time is reduced significantly compared to the

conventional software-based approach.

keywords : fault tolerant Ethernet, Port Monitor, Port Switch, Localized Software-based, LSFTE

* Department of information and communication Engineering, Myongji University Rep. of Korea

(vuhuythao@yahoo.com, kimsemog@empal.com, anhph.cse@gmail.com)

**Corresponding author, Department of information and communication Engineering, Myongji University Rep. of Korea

(jmr77@mju.ac.kr)

Received：2010년. 8월 31일, Revised : 2010년 9월 10일, Complete : 2010년. 9월 15일

Ⅰ. Introduction

Recently, distributed systems have been

based on popular network products to reduce the

development cycle and cost and to achieve

system interoperability.

Most networked systems, e.g., vehicles,

military weapon systems and banking systems,

need a net work with more reliability as well as

high performance and low power. There liability

of a system is defined as the ability to

performand to maintain system operation evenina

faulty environment. It is very difficult to have a

system without having any faults. In addition,

the initial designs of most networked systems

did not take great care about failures [1-3].

Therefore, one of the main requirements for

these systems is how to reduce and overcome

failures. The less a system fails, the more

reliable the system is. It is necessary to have a

solution that keeps the systems working well

even though failures take place. Furthermore,

Ethernet is becoming the central part in

networked systems. However, Ethernet was not

originally designed to handle network faults.

Hence, much effort has been made in research,

development and standardization which have

been trying to add fault- tolerant capabilities to



52   한국정보전자통신기술학회논문지 제3권 제3호

Ethernet-based mission-critical networks. Among

these, there have been some noteworthy

approaches proposed to create a Fault- Tolerant

Ethernet (FTE), such as software- based [4, 5],

hardware-based [6], and hybrid [7] approaches.

The hardware-based approach uses specialized

hardware to detect and recover faults. However,

since this approach employs proprietary products,

it is not appropriate to use the hardware-based

approach in a system which needs FTE

modification in order to meet system requirement

changes during operation. On the other hand, the

software-based approach adds a software layer

in order to control separate drivers. Although no

special hardware is added to implement FTE, it

often takes a long time to detect and recover

faults. Taking a combination of the

software-based and hardware-based approaches,

the hybrid approach is a software

implementation of the conventional

hardware-based approach. Nonetheless, it

depends on incoming packet and timeout

intervals to detect a fault, which requires

intensive probabilistic analysis to determine an

efficient timeout interval.

In this paper, we present a novel approach

called Localized Software-based Fault- Tolerant

Ethernet (LSFTE). It is based on the rule: a

network is healthy only if all of the nodes in

the network are healthy. Our approach tries to

keep all computers at a healthy status. We can

also apply this approach to switches or routers

to maintain them at a good status. Based on the

rule, we concentrate on detecting and recovering

local faults. By doing it locally, our approach

removes any dependency on incoming packets.

Furthermore, the time to detect a fault and for

fail-over switching gets shortened. Since our

approach is software-based, it does not need

any changes to hardware. It also supports the

network and transport protocol standards, e.g.,

TCP/IP. The key advantages of our proposed

approach are:

1. Fast detection and recovery: Because

LSFTE is a local algorithm, it takes a short

time to detect and recover faults.

2. Simplicity: Since LSFTE is composed of a

simple and effective algorithm, it is easy to

design, validate and maintain in practice. By

separating the algorithm into two functions, the

approach is clearer.

3. Separation of mechanisms from algorithm:

LSFTE executes two functions, namely network

monitoring and network recovering. The two

functions are named as the Port Monitor and

Port Switch, which are related together, i.e., the

Port Switch is based on the Port Monitor. The

Port Monitor executes the failure detection

mechanism and the Port Switch runs the

configurable mechanism.

Again our LSFTE is a software-based

approach. Therefore, it also has the advantages

that software-based approaches have:

1. Flexibility and interoperability: Today, many

distributed systems are built and run with

Commercial-Off-The-Shelf (COTS) hardware

(hub, switches and NICs) to be deployed easily

and reduce the cost. Being based upon software,

our approach does not need any changes of

hardware. Therefore our approach supports not

only failure detection and recovery, but also

flexibility and interoperability.

2. Transparency: LSFTE runs like a service

in the operating system. It is hidden to the

end-users. It is also independent of other

network applications. LSFTE and other

applications can be executed simultaneously.

The remainder of this paper is structured as

follows: Section 2 briefly reviews FTE. The

architecture of the framework for FTE

implementation is presented in section 3. Section

4 discusses the theory of operation for our

approach. Then section 5 shows the

implementation and evaluation of our approach.



A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   53

We will discuss further about data loss in

section 6. Finally we conclude our work in

section 7.

Ⅱ. Fault-Tolerant Ethernet

In order to understand the basics of FTE and

the approach to FTE implementation, we

consider the network model used for FTE as

shown in Figure 1. The model is a single

network with redundant cables. In this model,

each computer has two cables, e.g., each

computer is equipped with two LAN cards. One

cable is active at any time and the other one is

on standby. The active cable is used in normal

communication. The standby cable will be

changed to be active when the active one fails

Figure 1 Network model for FTE

As mentioned before there are three typical

approaches for FTE: software, hardware and

hybrid. Each of them has its own strengths but

also contains weaknesses.

1. Hardware-based approach

In this approach, the network adapter usually

includes Ethernet transceivers. It may have two

or more ports. It can detect local faults, e.g.,

faults on the cable, the RJ45 and the adjacent

switch in the active port and can switch to

another port. The approach does not concern

itself with determining whether or not the other

nodes or the networks connect with the

switches. The biggest advantage of the approach

is that the process of detecting a fault and

switching to another port is very fast. It takes

of the order of a few hundred milliseconds at

most. However, this approach needs specific

propriet ary hardware, e.g., a new network

adapter integrated with transceivers in side.

2. Software-based approach

The key advantage of this approach is that it

can detect faults not only in the local system

but also in the network, i.e., it can discover the

fault on a channel to a destination. If the

channel has a fault, the software switches to

another channel. Furthermore, the approach does

not need new hardware or a new network

adapter. We can use two COTS single-port

Ethernet Network Interface Cards (NICs) instead

of designing specific LAN cards. However, it

takes more time to detect and recover a fault.

3. Hybrid approach

The hybrid approach is the software

implementation of the conventional hardware.

The hybrid approach takes advantage of the

software and hardware approaches. It is faster

than the software approach. In addition, it does

not require new hardware. However, it depends

on incoming packets and timeout intervals to

detect faults and to switch to another port.

4. Our approach

Our approach is also a software-based

approach. However, it runs as a permanent

service in the operating system. It can detect

and recover faults automatically. Furthermore, it

utilizes system calls in the operating system.



54   한국정보전자통신기술학회논문지 제3권 제3호

Our approach operates as an independent service

that can detect local faults and switch to

another port in a few hundred milliseconds.

Furthermore, our approach is based on the rule:

the network is healthy only if all of the nodes

in a network are healthy. In our approach, each

node can detect and recover faults by itself as

shown in Figure 2. Since it is a software-based

approach, it can leverage advantages of previous

software-based approaches. However, it can

prevent the problem of needing a long

processing time. Moreover, it also does not

depend on incoming packets and timeout

intervals to detect and recover faults.

Basically, there are two tasks to be considered

to implement an FTE software or hardware:

1. Detecting the failure.

2. Performing the fail-over switching.

In the following sections, Ⅲ and Ⅳ, we will

explain the two tasks in detail.

Ⅲ. The Proposed Framework

Figure 2. Self-healing network model

Figure 3 presents our proposed Framework

Architecture. We use two LAN cards in a

station. As a result, we have two MAC

addresses, i.e., MAC 1 and MAC 2 and two

drivers, i.e., Driver 1 and Driver 2 in Figure 3,

respectively. In this architecture, we refer to the

OSI network model with seven layers. We only

concentrate on the data link layer. We add some

middleware called the LSFTE layer on the top

of the data link layer.

It is above the two drivers and directs the

two LAN cards by using these drivers. In other

words, the software is an interface between the

data link layer and the network layer. It resides

in the kernel. The software monitors the two

LAN cards and overcomes faults by

automatically changing the active LAN card to

the standby LAN card. This unique approach

does not require any change to the COTS

hardware (switch, hub, Ethernet physical link

and Network Interface Card (NIC)) or software

(Ethernet driver and protocol), yet. It is

transparent to application software. Our approach

concentrates on detecting and recovering the

fault in the local host.

Figure 3. Proposed Framework Architecture

Ⅳ. Theory of Operation

1. Algorithm

LSFTE is software that runs independently of

other network applications. It includes two parts:

a Port Monitor and a Port Switch. The Port



A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   55

Monitor checks if the link status of an active

LAN card is good. If there is a fault, the Port

Switch exchanges the function of the two LAN

cards - changing the status of the standby LAN

card to active and the status of the active LAN

card to standby; i.e., the standby LAN card is

used to transmit and receive data in place of the

active LAN card. The algorithm used in our

approach is shown in Figure 4. Here it is

assumed that the computer uses two LAN cards,

i.e., Network Adapter 1 (NA1) and Network

Adapter 2 (NA2). We also assume that the

Network Adapter 1 is active and the Network

Adapter 2 is on standby at the beginning.

Figure 4. Algorithm

1.1 Port Monitor

The Port Monitor is one part of LSFTE. It

monitors the status of the active LAN card.

There are several techniques to check if the link

status of a LAN card is good. One of them uses

the ECHO message like the "Ping" command.

With the ECHO message, the sender can get the

reply message from the receiver within a very

small amount of time. Based on the reply

message, the sender can know exactly the link

status of the active LAN card. For another way,

we can use system calls in the operating system

to investigate the link status. Because we only

need to discover the link status locally, we could

do this with an ECHO message to the

Default-Gateway of the local host. In addition,

these methods require a small amount of time

for checking the link status.

1.2 Port Switch

The Port Switch is the other part of LSFTE.

It takes action based on the result from the Port

Monitor. If the Port Monitor detects any errors

with an active LAN card, the Port Switch

swaps two LAN cards; i.e., the active LAN

card’s status is changed to standby and the

standby LAN card is assigned to the active

status. The combination of statuses and given

values for the two LAN cards is illustrated in

Table 1. In the table NA 1 is an abbreviation

for Network Adapter 1 and NA 2 denotes

Network Adapter 2. Actually, LSFTE makes the

computer use only one LAN card – the enabled

LAN card - at a time. The other one is a

back-up for using when the enabled LAN card

is broken.

NA 1 NA 2 Active Stanby

OK OK NA 1 NA 2

OK Not OK NA 1 NA 2

Not OK OK NA 2 NA 1

Table 1. Status table

2. Flowchart

Here we introduce flowcharts for our

approach. Firstly, we show in Figure 5 the

flowchart for the case in which each computer

has only two LAN cards. After that, we

demonstrate in Figure 6 the data flow for the

case in which each computer is equipped with

more than two LAN cards.

2.1 A computer with two LAN cards

In this case, each computer has two LAN

cards, i.e., Network Adapter 1 and Network

Adapter 2. At the beginning, LSFTE assigns an

active status to Network Adapter 1 and gives

Network Adapter 2 standby status. After that,

LSFTE checks the link status of the active



56   한국정보전자통신기술학회논문지 제3권 제3호

LAN card. If there is any fault, LSFTE

continues checking the standby LAN card. If the

standby LAN card has a good link status,

LSFTE does the switching step - changing the

status of the active LAN card to standby and

the status of the standby LAN card to active,

i.e., the standby LAN card is used to transmit

and receive data in place of the previously

active LAN card.

Figure 5. Flow chart for each computer with 
two LAN cards

2.2 A computer with more than two LAN cards

In this situation, each computer has more than

two LAN cards. One card is the active LAN

card and the others are the standby LAN cards.

Periodically, LSFTE verifies the active LAN

card. If it detects any fault in the active LAN

card, it attempts to find a good standby LAN

card among all the standby LAN cards. The

good standby LAN card refers to a standby

LAN card with a good link status, i.e., we can

use the standby LAN card to send and receive

data. After that, LSFTE swaps the active LAN

card and the good standby LAN card - altering

the status of the active LAN card to standby

and the status of the standby LAN card to

active, i.e., the standby LAN card is used to

transmit and receive data instead of the active

LAN card. In both cases, LSFTE tries to find a

good standby LAN card - a good backup LAN

card to replace the active LAN card with a

fault. LSFTE makes an effort to reduce the time

for fail-over switching. It also decreases the

data loss. However, in the case of each

computer with more than two LAN cards, we

meet two key issues: how many LAN cards are

good for one computer and how can we utilize

the standby LAN cards? In this paper, we do

not go further into these issues. We only focus

on the case with two LAN cards.

Figure 6. Flow chart for each computer with more 
than two LAN cards

Ⅴ. EXPERIMENTS

1. Implementation

We implemented LSFTE as a service that

runs automatically in the kernel of the operating

system (OS). The service always checks two

LAN cards and does switching if it detects any

fault in the active LAN card. The

implementation structure is shown in Figure 7.

As mentioned, we used two LAN cards for each

computer.



A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   57

Figure 7. Implementation Infrastructure

2. Evaluation

2.1 Time Estimation

Figure 8. Time Estimation

As we mentioned above, the time for fail-over

switching including:

- Time to detect the failure (tf)

- Time to do switching (td)

Totally, the time we to enable switch from

the active LAN card to the standby LAN card

in a computer is tl=tf+td.

2.2 Configuration

As shown in table 2, we use a computer that

is equipped with the design. We also

implemented a checking software to evaluate.

We also implemented some checking software

to evaluate the LSFTE service on Windows XP.

We installed two network adapters in our

computer: Adapter 1 and Adapter 2. Then we

demonstrated our approach by using the

checking software with the following initial and

testing situations.

Parameters Value

CPU Speed 1.8 GHz

RAM 2GHz

Dual Ethernet LAN

card
1Gbps

OS
Windows XP

Service Pack 2

Framework .Net Framework 2.0

Table 2. Computer Setup

2.3 Initial Situation

At the beginning, Adapter 1 is connected and

Adapter 2 is disconnected, i.e., the status of

Adapter 1 is active and the status of Adapter 2

is standby, as shown in Figure 8. Additionally,

as shown in the figure, each adapter has one

control button named "Disable". These control

buttons are used to disable each adapter during

our testing operations.

Figure 9. Initial Condition

2.4 Testing Situation

First, the computer is in the initial situation.

Then we disable Adapter 1 by using its control

button. The LSFTE service automatically detects

the error on Adapter 1 and swaps the status of

Adapter 1 and the status of Adapter 2 as shown

in Figure 9. After swapping, the status of

Adapter 2 is active and the status of Adapter 1

is standby, i.e., Adapter 2 is used to transmit

and receive data instead of Adapter 1. The time

for fail-over switching in this case is found to



58   한국정보전자통신기술학회논문지 제3권 제3호

be about 0.5 seconds.

Figure 10. Fail-over Switching

In our experiment, we need a few hundred

milliseconds to check the link status of the

active LAN card by using the library inside the

OS. We also need a few hundred milliseconds to

disable or enable the LAN cards in a faulty

situation, i.e., the active LAN card is disabled

and the standby LAN card is enabled. After we

do experiment 20times, we get the average

fail-over switching time of 0.415 second and the

variance of 0.003 second. This is the key

advantage of our approach. The advantage

originates from the algorithm in which LSFTE

does fail-over switching locally by directly using

the library inside the OS.

Ⅵ.  DISCUSSION

As presented in the previous sections, we

know how to control two LAN cards. We

completed the theory and conducted an

experiment, as mentioned above, to decrease the

switching time. However, one of the key

questions is how to reduce the packet loss? We

would like to present a theoretical method of

how to make the loss become smaller. We also

use the result from the LSFTE experiment in

the method. Nonetheless, here we will just deal

with theory of the method; an experiment for

this method is beyond the scope of this paper.

In the method, we combine the results from

the fail-over switching part and the new part

with a useful technique. The useful technique is

to queue the sending packets, i.e. the sending

packets will be kept in a FIFO queue and data

is transmitted based on the status of the

connection on the active LAN card. Figure 10

shows the data flow of the new model that we

designed by using the results from the LSFTE

experiment in previous sections. In almost OS,

the system is divided into two modes: User

mode and Kernel mode. When we talk about

User mode, we mean the applications made by

application programmers. Kernel mode contains

system calls and kernel functions that application

programmers do not change. Kernel mode is like

a bridge between the software in User mode

and the hardware. As shown in Figure 10, the

application in User mode wants to send some

data to another computer. The application calls a

system call to interact with kernel functions.

The data will be sent from functions in User

mode to functions in Kernel mode. In Kernel

mode, the data will traverse over some layers,

e.g., the TCP layer, IP layer and Data Link

layer. In the Data Link layer, we place an

LSFTE module that we call the Controlling

LSFTE module to do fail-over switching as

mentioned in previous sections. When the data is

in here, the data will be kept in a queue by

another LSFTE module that we call the LSFTE

sending module. This module asks the

Controlling LSFTE module about the connection

in the active LAN card before sending the data

to the lower layer. If the connection on the

active LAN card is good, i.e. if it is connected

well, the LSFTE sending module gets data

from the queue and sends the data to the active

LAN card. Conversely if there is no connection

on the active LAN card, i.e. the connection is

disconnected, so that we cannot send the data

over the active LAN card then the Controlling

LSFTE module does fail-over switching. In the



A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   59

fail-over switching time, the application still

continues to transmit data to the destination

because it does not know anything that is

happening in the Kernel mode and the data will

be queued by the LSFTE sending module. When

the Controlling LSFTE module finishes doing

the fail-over switching, it notifies the connection

status as good to the LSFTE sending module

and the LSFTE sending module can now send

the data over the connection. Here, data will be

stored in a special queue that is a FIFO (First

In First Out) queue. That means the data

coming first will be transmitted first.

Figure 11. Data flow for the less packet loss 
algorithm

Although the proposed method will reduce the

data loss in the fail-over switching time, we

have a trade-off here. Each sending packet

needs a delay time in the queue. However, we

believe that the delay time is not significant

because we will implement these LSFTE

modules in the kernel. As is known, we can

customize the Linux kernel, so we can create

the LSFTE modules inside the kernel. Another

reason is that computers are very powerful, so

the time for local processing is very short. As

a result, the delay time will be rapidly reduced

on a fast computer. On the other hand, in most

mission-critical systems, it is essential to

minimize the packet loss. The new model can

satisfy these requirements well.

Ⅶ. CONCLUSION

In this paper, we presented a novel approach

called LSFTE that meets the typical

requirements for a Fault Tolerant Ethernet. With

our approach, a networked system can keep

communication functioning, since it takes

advantage of the redundant cable lines with

LSFTE. For the LSFTE implementation a

software layer, which uses a simple and

effective algorithm, has been added above

existing drivers' line ports to detect and recover

faults. LSFTE does not require any change to

COTS products (i.e., COTS hubs, switches, NICs

and drivers) or to the end-user interfaces.

Furthermore the fault-detecting time is

significantly reduced compared to the

conventional software approach. In addition, the

fault-detection and recovery do not depend on

the packet arrivals. It is expected that we can

expand our approach for the multiple LAN cards

case. Moreover, we discuss a new way to

implement the new model by using LSFTE to

reduce the loss of packets. Possible future study

areas can be: (1) how many LAN cards for each

computer is best? (2) How do we effectively

find a good card among the standby LAN

cards? and (3) how to reduce the packet loss?

Ⅷ. ACKNOWLEDGMENTS

This work was supported by the Agency for

Defense Development (ADD) and the Defense

Acquisition Program Administration (DAPA)

under Grant No. ADD-07-06-02.



60   한국정보전자통신기술학회논문지 제3권 제3호

REFERENCES

[1] A. Romanovsky. "A Looming Fault

Tolerance Software Crisis", ACM

SIGSOFT Software Engineering, pp. 1-4,

2007

[2] M. Bruntink, A. van Deursen, and T.

Tourwe. "Discovering Faults in

Idiom-Based Exception Handling",

International Conference on Software

Engineering, ICSE 2006, pp.242- 251, 2006.

[3] F. Cristian. "Exception handling",

Dependability of Resilient Computers.

Blackwell Scientific Publications, pp.68-97,

1989.

[4] J. Huang, S. Song, L. Li, P. Kappler, R.

Freimark, J. Gustin, and T. Kozlik. "An

open solution to fault-tolerant Ethernet:

design, prototyping, and evaluation", IEEE

International Performance, Computing and

Communications Conference, IPCCC'99, pp.

461 - 468, 1999.

[5] S. Song, J. Huang, P. Kappler, R. Freimark,

J. Gustin, and T. Kozlik. "Fault-tolerant

Ethernet for IP-based process control:

Ademonstration", Dependable Systems and

Networks, DSN, 2000.

[6] PMC675/RM675 family of next generation

dual intelligent Ethernet Controllers,

http://gefanuc.com.

[7] A. P. Hoang, J. M. Rhee, S. M. Kim, and D.

H. Lee. "A Novel Approach for

Fault-Tolerant Ethernet Implementation",

Fourth International Conference on

Networked Computing and Advanced

Information Management, NCM'08. pp.

58-61, 2008.

저자약력

Huy Thao Vu Non-member

Feb. 2007 : Graduated

Technology, Computer

Science and Engineering

of HoChiMinh University

March. 2009~Now : M.A in

Dept. Communication

Engineering of Myongji

University

<Interested> Network Communication, Fault

Tolerant System.

Semog Kim Non-member

Feb. 1998 : Graduated Dept.

of Electronic Engineering

of PuKyong National

University

March 2007~Now : (PH.) D.

course in Dept. of

Communication

Engineering of Myongji

University

Aug. 1999~ Aug. 2001 : General Manager in

NeoDigital

Jan. 2002~March. 2008 : Director in SungWon

Telecom

Jan. 2010~Now : Manager in RingNet

<Interested> Fault Tolerant System,

HFC(Hybrid Fiber Coaxal) System

Anh Pham Hoang Non-member

Feb. 2005 : Graduated

Technology, Computer

Science and Engineering

of HoChiMinh University

Feb. 2010 : M.A in Dept. of

Communication

Engineering of Myongji

University

March. 2010~Now : (PH.) D. course, Dept. of

Communication Engineering of Myongji University

<Interested> Network Communication,

Fault Tolerant System.



A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)   61

JongMyung Rhee Member

Feb. 1976 : Graduated Dept.

of Electronic Engineering

of Seoul National

University

Feb. 1978 : M.A. in Dept.

of Electronic Engineering

of Seoul National

University

Dec. 1987 : Ph. D. in Dept. Electron Engineering of

North Carolina State University

March 1978~Dec. 1997 : Principal Researcher in

ADD(Agency for Defense Development)

Sep. 1992~Aug. 1994 : Associate Professor(Adjunct)

in Dept. Information Communications

Engineering of ChungNam National University

Dec. 1997~Oct. 1999 : Director in Laboratory of

Dacom

Oct. 1999~Oct. 2005 : Vice-president(CTO) in

Hanaro Telecom(Now, SK Broadband)

Sep. 2006~Now : Professor in Dept. of

Communication Engineering of Myongji

University and Leader of Industry-Academic

Cooperation Foundation of Myongji University

<Interested> Network Communication,

Fault Tolerant System.


