3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography

  • Jeong, Mi-Hee (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Sang-Ho (Department of Mineral Resources & Energy Engineering, Chonbuk National University) ;
  • Jeong, Soo-Bok (Mineral Resource Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Young-Hun (Korea Resources Corporation) ;
  • Park, Jai-Koo (Department of Geoenvironmental System Engineering, Hanyang University) ;
  • Kaneko, Katsuhiko (Division of Environment and Resources Engineering, Graduate School of Engineering, Hokkaido University)
  • 투고 : 2010.09.08
  • 심사 : 2010.09.17
  • 발행 : 2010.09.30

초록

스카른 Zn-Pb-Cu 복합광석을 구성하는 주요 구성 광물의 정량분석을 목적으로, 마이크로 포커스 X-ray 단층촬영 장비를 이용한 스카른 복합광석의 3차원 비파괴검사를 수행하였다. X-ray 단층화상의 화상결함을 감소시키고자 제안된 화상보정법을 이용하여 화상들을 보정한 후에 3차원으로 재구성하였다. 주사전자현미경(SEM)에 의한 표면분석과 보정된 X-ray 단층화상을 비교하여 주요광물에 대한 CT 값의 범위를 결정하였다. 재구성화상 내 전체 광물의 체적비율을 분석한 결과, 황화광물 20.5%, 맥석광물 79.5%로 평가되었다. X-ray 3차원 단층화상 정량분석법은 광석 내 유용광물의 부존형상과 회수율 분석에 유용하게 적용될 것으로 기대된다.

A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

키워드

참고문헌

  1. 김영훈, 현종영, 노혜정 (2010) 가곡광산 섬아연석의 기초 부선 특성 연구. 2010 한국지구시스템공학회 제 94회 춘계학술발표회, 149-151.
  2. 손병국 (2007) 광물의 정량분석법 및 정량분석의 중요성. 광물과 산업, 20, 19-270.
  3. 조상호, 조슬기, 김승곤, 박찬, 金子 勝比古 (2009) 단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구. 한국암반공학회지, 19, 545-557.
  4. 현창욱, 박형동 (2005) X-ray CT를 이용한 암석 내부 특성 연구. 2005년도 대한지질공학회 정기총회 및 학술발표회.
  5. Kitayama, H. (2008) A 3-D calibration method for the micro-focused X-ray CT by image processing. Ph.M. Thesis, University of Hokkaido, Sapporo, Japan, 47p.
  6. Miller, J.D. and Lin, C.S. (2003a) Three-dimensional analysis of particulates in mineral processing systems by cone beam X-ray microtomography. Minerals and Metallurgical processing, 3, 337-346.
  7. Miller, J.D., Lin, C.L., Garcia, C., and Arias, H. (2003b) Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray microtomography. International Journal of Mineral processing, 72, 331-340. https://doi.org/10.1016/S0301-7516(03)00091-7
  8. Taud, H., Martinez-Angeles, R., Parrot, J.F., and Hernandez-Escobedo, L. (2005) Porosity estimation method by X-ray computed tomography. Journal of Petroleum Science and Engineering, 47, 209-217. https://doi.org/10.1016/j.petrol.2005.03.009
  9. Van Geet, M., Swennen, R., and Wevers, M. (2000) Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sedimentary Geology, 132, 25-36. https://doi.org/10.1016/S0037-0738(99)00127-X
  10. Yun, S. (1978) Petrography, chemical compositon, and depositional environments of the Cambro-Ordovician sedimentary sequence in the Yeonhwa I mine area, southeastern Taebaegsan region. Korea. Journal of Geological Society of Korea, 14, 145-174.