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Abstract

We consider two components system which have Freund’s bivariate exponential
model. In this case, Bayesian multiple comparisons procedure for failure rates is sug-
gested in K Freund’s bivariate exponential populations. Here we assume that the com-
ponents enter the study at random over time and the analysis is carried out at some
prespecified time. We derive fractional Bayes factor for all comparisons under non-
informative priors for the parameters and calculate the posterior probabilities for all
hypotheses. And we select a hypotheses which has the highest posterior probability as
best model. Finally, we give a numerical examples to illustrate our procedure.

Keywords: Bayesian multiple comparison, fractional Bayes factor, noninformative pri-
ors, posterior probability.

1. Introduction

Freund (1961), Marshall and Olkin (1967), Block and Basu (1974) and many authors
formulated a bivariate extension of the exponential model as a model for a system where
the lifetimes of the two components may depend on each other. In particular, the Freund’s
model has been generalized in the literature in various ways. Some of the generalizations
are based on various functional representations of Freund’s model obtained by replacing
exponential random variables by other random variables. Let (X,Y ) be random variables
of a Freund’s bivariate exponential model with parameters Θ = (α, α

′
, β, β

′
). Then the joint

probability density function is given as

f(x, y : Θ) =


αβ

′
exp

[
−β′

y − (α+ β − β′
)x
]
, y > x > 0,

α
′
β exp

[
−α′

x− (α+ β − α′
)y
]
, x > y > 0.

(1.1)

Hanagal (1996) suggested an estimator of system reliability from stress-strength relation-
ship. Cho and Baek (2002) derived a probability matching priors and Cho (2007) suggested
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Bayesian test procedure for symmetry. Also Cho (2009) derived fractional Bayes factor for
independent test procedure with type I censored data.

On the other hands, we focus on Bayesian multiple comparisons for K Freund’s bivariate
exponential populations with type I censored data. In Bayesian approach, the model with
the highest posterior probability is selected as the best model. Hence we have to compute
all the posterior probabilities of the hypotheses under consideration. In many cases, non-
informative priors for the parameters are used. But the noninformative priors are typically
improper which the priors are only up to arbitrary constants. Berger and Pericchi (1996)
and O’Hagan (1995) introduced the intrinsic Bayes factor (IBF) and fractional Bayes factor
(FBF), respectively to remove the arbitrariness. Cho et al. (2006) and Cho and Cho (2006)
suggested Bayesian multiple comparisons procedure for some model using FBF.

In this paper, we suggest a Bayesian multiple comparisons procedure for failure rates
in K bivariate exponential populations with type I censored data. And we compute the
FBF’s for all comparisons and posterior probability for all hypotheses. Also we select the
best hypotheses which has the highest posterior probability. Finally, we give a numerical
example to illustrate our procedure.

2. Preliminaries

Let (xi,yi) = ((xi1, yi1), · · · , (x∈i, y∈i)) be a ni×1 vector of independent observations i th
population with density f(xij , yij |θi) and likelihood function Li (θi|xi,yi) , i = 1, · · · ,K, j =
1, · · · , ni. And let (x,y) = ((x1,y1), · · · , (xK ,yK)). Then multiple comparisons of K pop-
ulations is to make inferences concerning relationships among the θi’s based on (xi,yi).

Let Θ = {(θ1, θ2, · · · , θK) : θi ∈ R, i = 1, 2, · · · ,K} be the K-dimensional parameter
space. Equality and inequality relationships among the θi’s induce statistical hypothe-
ses Hi such that subsets of Θ, that is, H1 : Θ1 = {θi : θ1 = θ2 = · · · = θK}, H2 :
Θ2 = {θi : θ1 6= θ2 = · · · = θK} and so on up to HN : ΘN = {θi : θ1 6= θ2 6= · · · 6= θK}.
The hypotheses Hr : Θr, r = 1, 2, · · · , N , are disjoint, and ∪Nr=1Θr = Θ.

The elements of Θ themselves with positive probability, will reduce to some r ≤ K distinct
values. That is, the model can classified r(r = 1, · · · ,K) distinct groups. Let superscript
* be distinct values of the parameters and let θ∗1 , · · · , θ∗r denote the set of distinct θi’s. We
need to define the configuration notation.

Definition (Configuration) The set of indices S = {S1, · · · , SK} determines a classifi-
cation of the data Θ = {θ1, · · · , θK} into r distinct groups or clusters; the nj be number of
observations in group j share the common parameter value θ∗j .

Now, we define Kj as the set of indices of observations in group j; That is, Kj =
{i : Si = j}. There is a one to one correspondence between hypotheses and configurations.
Therefore the Bayes factor for multiple comparisons can easily compute by this configuration
notation.

On the other hands, let πi(θi) and pi be a prior distribution and the prior probabilities of
hypotheses Hi, respectively. Then the posterior probability that the hypotheses Hi is true

is given as P (Hi|x,y) =
(∑N

j=1 (pj/pi)Bji

)−1

, where Bij is the Bayes factor of hypotheses
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Hj to hypotheses Hi defined by

Bji =
mj(x,y)

mi(x,y)
=

∫
Θj
L (θj |x,y) πj(θj)dθj∫

Θi
L (θi|x,y) πi(θi)dθi

. (2.1)

The computation of Bji needs specification of the prior distributions πi(θi) and πj(θj).
In this paper, we use the noninformative prior which has improper distribution. Let πN

i be
the noninformative prior for hypotheses Hi. Then the use of improper priors πN

i (·) in (2.1)
causes the Bji to contain arbitrary constants.

By O’Hagan (1995), the FBF of hypotheses Hj versus hypotheses Hi is given as

BF
ji =

qj(b,x,y)

qi(b,x,y)
, (2.2)

where qi(b,x,y) =
(∫

Θi
L (θi|x,y) πN

i (θi)dθi

)
/
(∫

Θi
Lb (θi|x,y) πN

i (θi)dθi

)
and b specifies

a fraction of the likelihood which is to be used as a prior density.
Suppose that a hypotheses is classified r distinct groups. Then the likelihood function is

given by L (θ∗1 , · · · , θ∗r |x,y) =
∏r

t=1

∏
{i∈Kt}

∏ni

j=1 f(xij , yij |θt). If we use noninformative

prior for the hypotheses πN
r (θ∗1 , · · · , θ∗r), then the FBF is given by

q(b,x,y) =

∫∞
−∞ · · ·

∫∞
−∞ L (θ∗1 , · · · , θ∗r |x,y) · πN

r

(
θ∗1 , · · · , θ∗r

)
dθ∗1 · · · dθ∗r∫∞

−∞ · · ·
∫∞
−∞ Lb (θ∗1 , · · · , θ∗r |x,y) · πN

r (θ∗1 , · · · , θ∗r) dθ∗1 · · · dθ∗r
. (2.3)

Thus if a hypotheses Hi is classified ri distinct groups and a hypotheses Hj is classified rj
distinct groups then the FBF of Hj versus Hi is given by BF

ji = qj(b,x,y)/qi(b,x,y), where

qi(b,x,y) =

∫∞
−∞ · · ·

∫∞
−∞ L

(
θ∗1 , · · · , θ∗ri |x,y

)
· πN

r

(
θ∗1 , · · · , θ∗ri

)
dθ∗1 · · · dθ∗ri∫∞

−∞ · · ·
∫∞
−∞ Lb

(
θ∗1 , · · · , θ∗ri |x,y

)
· πN

r

(
θ∗1 , · · · , θ∗ri

)
dθ∗1 · · · dθ∗ri

.

3. Bayesian multiple comparisons

We let ti be type I censoring time for i th observation which is fixed constant. For j =
1, 2; k = 1, 2, 3; i = 1, 2, · · · , n, and we let G1i = I(Xi > ti), G2i = I(Yi > ti), G

o
ji =

1 − Gji, j = 1, 2, Ri = I(Xi < Yi), R
o
i = 1 − Ri. Then i th observed lifetime (xi, yi) is

observed as follows;

(1) (xi, yi) = (xi, yi), if xi < ti, yi < ti (2) (xi, yi) = (ti, yi), if xi > ti, yi < ti
(3) (xi, yi) = (xi, ti), if xi < ti, yi > ti (4) (xi, yi) = (ti, ti), if xi > ti, yi > ti

In this paper, we assume α = β(≡ ψ), α
′

= β
′
(≡ η) so that the lifetimes of two components

are equal failure rates. And suppose that the k th hypotheses Hk classified rk distinct groups,
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k = 1, · · · ,K.

L
(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)|(x,y)
)

=

rk∏
t=1

{
ψ∗

n1t+n2t+n4t+n5t

t

}
· η∗

n1t+n2t

t

· exp

−2ψ∗t

 ∑
i∈S14;j∈Kt

xij +
∑

i∈S25;j∈Kt

yij +
∑

i∈S6;j∈Kt

(xij + yij)

 (3.1)

· exp

−η∗t
 ∑

i∈S25;j∈Kt

(xij − yij) +
∑

i∈S14;j∈Kt

(yij − xij)

 ,
where Kt is the set of indices of t th group in the k th hypotheses. n1t =

∑
i∈Kt

RiG
o
1iG

o
2i,

n2t =
∑

i∈Kt
Ro

iG
o
1iG

o
2i, n4t =

∑
i∈Kt

RiG
o
1iG2i, n5t =

∑
i∈Kt

Ro
iG1iG

o
2i, t = 1, · · · , rk, k =

1, · · · ,K.
On the other hand, we assume that the noninformative prior for

(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)
)

is given by

πN
k

(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)
)
∝

1

(ψ∗1 · η∗1) · · · (ψ∗rk · η∗rk)
,

0 < ψ∗1 , · · · , ψ∗rk , η
∗
1 , · · · , η∗rk <∞. (3.2)

Then the elements of FBF for hypotheses Hk is computed as follows;∫ ∞
0

· · ·
∫ ∞

0

Lk

(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)|(x,y)
)
πN
k

(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)
)
dψ∗1 · · · dη∗rk

= c ·
rk∏
t=1

 Γ (n1t + n2t){∑
i∈S25;j∈Kt

(xij − yij) +
∑

i∈S14;j∈Kt
(yij − xij)

}n1t+n2t


·

 Γ (n1t + n2t + n4t + n5t){
2
(∑

i∈S14;j∈Kt
xij +

∑
i∈S25;j∈Kt

yij +
∑

i∈S6;j∈Kt
(xij + yij)

)}n1t+n2t+n4t+n5t

 (≡ Sk1)

and

∫ ∞
0

· · ·
∫ ∞

0

Lb
k

(
(ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

)|(x,y)
)
πN
k ((ψ∗1 , η

∗
1), · · · , (ψ∗rk , η

∗
rk

))dψ∗1 · · · dη∗rk

= c ·
rk∏
t=1

 Γ (b(n1t + n2t)){
b
(∑

i∈S25;j∈Kt
(xij − yij) +

∑
i∈S14;j∈Kt

(yij − xij)
)}b(n1t+n2t)


·

 Γ (b(n1t + n2t + n4t + n5t)){
2b
(∑

i∈S14;j∈Kt
xij +

∑
i∈S25;j∈Kt

yij +
∑

i∈S6;j∈Kt
(xij + yij)

)}b(n1t+n2t+n4t+n5t)

 (≡ Sk2) .
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Here c is a constant which is independent of ψ∗i and η∗i , i = 1, · · · , rk. Hence qk(b,x,y) =
Sk1/Sk2. If a hypotheses Hi is classified ri distinct groups and a hypotheses Hj is classified
rj distinct groups then the FBF of Hj versus Hi is given by

BF
ji =

qj(b,x,y)

qi(b,x,y)
=
Sj1/Sj2

Si1/Si2
. (3.3)

Hence the FBF for all comparisons can be computed. Using these FBF, we can calculate
the posterior probability for hypothesis Hi, i = 1, · · · ,K. Thus, we can select the hypothesis
with highest posterior probability in Bayesian multiple comparisons based on FBF.

4. A numerical example

A numerical example of the multiple comparisons for the failure rates in Freund’s bivariate
exponential populations is presented in this section using simulated data. We consider 4
Freund’s bivariate exponential models each with size ni = 15, i = 1, · · · , 4 and (2.0, 2.5) for
(ψ1, η1) and (ψ2, η2), (3.0, 3.5) for (ψ3, η3) and (ψ4, η4), respectively. Then the numbers of
possible hypotheses for multiple comparisons are 15. And we note that the true hypothesis
may be Htrue : ξ1 = ξ2 6= ξ3 = ξ4, where ξi = (ψi, ηi), i = 1, · · · , 4. The simulated data are
given by table 4.1. Where * means censored data.

Table 4.1 The simulated data

K simulated data

1
(.5816, 1.2363*), (.3502, .4268), (.4255, .0565), (.0920, .3000), (1.4248*, .0710), (.2170, .0522),
(.1020, 1.0493*), (1.7308*, .4147), (1.3584*, .0860), (1.1769*, .3275), (.6405, .1859),
(.9745*, .5463), (.1777, .2779), (.6424, 1.0402*), (.1025, .3591)

2
(.7250, .1051), (1.4029*, 1.4571*), (.6764, .0546), (.0258, .0509), (.2930, 1.6875*), (.4207, .7319),
(.6826, .0365), (.3081, .0469), (.0517, .3927), (1.2268*, .4150), (1.8848*, 1.6212*), (.8865, .1947),
(.3597, .0249), (.4326, 1.2948*), (.2384, .3544)

3
(.5242, .4362), (.2365, .1277), (.0954, .0418), (.3916, .2962), (.3299, .0977), (.0868, .9382*), (.1293,
.0641), (.6393, .2353), (.4079, .0922), (.0513, .3902), (.0460, .3064), (.6475, .2611), (.2921, .3063),
(.2005, .1349), (.7147, .6151)

4
(.1820, .2271), (.9506*, .0673), (.0875, .3407), (.1657, .0446), (.2119, .2696), (.0637, .0858), (.1034,
.3916), (.0141, .1058), (.5176, .1923), (.3092, .2285), (.2002, .5951), (.1679, .1160), (.1518,1.3960*),
(.1592, .1992), (.2836, .2827)

Also calculated posterior probabilities for all possible hypotheses is given by table 4.2.

Table 4.2 Calculated posterior probabilities for each hypotheses

Hr P(Hr|x,y) Hr P(Hr|x,y) Hr P(Hr|x,y)
ξ1 = ξ2 = ξ3 = ξ4 .0336 ξ1 = ξ3 = ξ4 6= ξ2 .0603 ξ1 6= ξ2 = ξ3 = ξ4 .0198
ξ1 = ξ2 = ξ3 6= ξ4 .0711 ξ1 = ξ3 6= ξ2 = ξ4 .0146 ξ1 6= ξ2 = ξ3 6= ξ4 .0298
ξ1 = ξ2 = ξ4 6= ξ3 .0320 ξ1 = ξ3 6= ξ2 6= ξ4 .0597 ξ1 6= ξ2 = ξ4 6= ξ3 .0148
ξ1 = ξ2 6= ξ3 = ξ4 .2892 ξ1 = ξ4 6= ξ2 = ξ3 .0164 ξ1 6= ξ2 6= ξ3 = ξ4 .1246
ξ1 = ξ2 6= ξ3 6= ξ4 .1405 ξ1 = ξ4 6= ξ2 6= ξ3 .0332 ξ1 6= ξ2 6= ξ3 6= ξ4 .0605

From table 4.2, it is to be noted that the hypotheses ξ1 = ξ2 6= ξ3 = ξ4, ξ1 6= ξ2 6= ξ3 = ξ4
and ξ1 = ξ2 6= ξ3 6= ξ4 have the large posterior probabilities 0.3513, 0.1693 and 0.1566,
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respectively. Thus the data lend greatest support to equalities for ξ1 = ξ2 and ψ3 = ψ4

being different from the others.
So far, the multiple comparisons procedure was carried out for K Freund’s bivariate ex-

ponential populations with type I censored data based on FBF. Also, the method can be
extended to a bivariate exponential populations with incomplete data or multivariate expo-
nential populations as well, with moderate effort.
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