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Abstract

In this paper, we extend the work by Lee et al. (2010) to multidimensional diffusion
processes. A test statistic analogous to the one-dimensional case is proposed to inves-
tigate the joint stability of covariance matrix parameters and, under certain regularity
conditions, is shown to have a limiting distribution of the sup of a multidimensional
Brownian bridge. A simulation result is provided for illustration.

Keywords: Discretely observed sample, multidimensional diffusion process, residual
based cusum test.

1. Introduction

Lee et al. (2010) proposed the cusum of squares test based upon discretely observed sample
to detect the change points of the volatility parameter in one-dimensional diffusion processes.
While being free from any drift changes, their test considered the case which has not been
dealt with by Gregorio and Iacus (2008), i.e., the case with unknown drift parameters. In
this paper, we extend the work by Lee et al. (2010) to multidimensional diffusion processes
in order to investigate the joint stability of the covariance matrix parameters.

For the extension, we consider the following multidimensional stochastic differential equa-
tion:

dXt = a(Xt;θ)dt+ σdW t, X0 = x0, (1.1)

where θ ∈ Θ, Θ is a bounded convex domain in Rm, and σ ∈ Rd ⊗ Rr are unknown
parameters, a(·;θ) is an Rd-valued function defined on Rd ⊗Θ and W is an r-dimensional
standard Brownian motion. As in the one-dimensional case, we suppose that Xti , ti = ihn,
i = 1, . . . , n, are observed, where {hn} is a sequence of positive real numbers such that

hn→0 and (nhn)
−1

= O(1). Now our main purpose is to develop a statistical procedure to
test if there exists a change point of the covariance matrix, i.e.,
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H0: S is constant over i = 1, . . . , n vs. H1: not H0,

where S = σσ
′
.

This idea of testing the stability of the correlation/covariance structure is not com-
pletely new. In financial time series, this topic has long been an issue because the cor-
relation/covariance matrix serves as one of the inputs for the computation of a trading
portfolio. In particular, the correlation from international equity returns has been studied
under the heading of “contagion”, meaning abnormally high correlation during financial
crisis. For example, Longin and Solnik (1995) found that the correlation rises in periods of
high volatility by analyzing monthly excess returns over the period 1960-90. And, recently,
Rodriguez (2007) used switching-parameter copulas to model dependence structure of Asian
countries’ daily returns. We refer the interested readers to Rodriguez (2007) and the papers
cited therein. In this paper, however, we are more interested in analyzing the interdepen-
dence structure of high frequency data, say, intraday returns from KOSPI and KOSDAQ,
in order to gain some insight about the cross-asset dynamics in the short-term horizon. In
fact, this is not a simple problem and not much research has been performed. Thus we
decided to adopt the SDE (1.1), a simplified version of Yoshida (1992), as the starting point
of our investigation and plan to extend the current result to a more realistic model in the
near future. Here the detecting tool will be the multidimensional extension of the cusum
test used in Lee et al. (2010). (See Park and Lee (2006, 2007) and Song et al. (2007) for
more applications of the cusum test.) The paper is organized as follows. In Section 2, we
propose a cusum of squares test based on residuals and show that, under certain regularity
conditions, the test has a limiting distribution of the sup of a multidimensional Brownian
bridge. In Section 3, we illustrate our results with simulation study. And, in the Appendix,
we provide the proof of Lemma 2.1.

2. Main result

First, let us assume that

(A1) There exists a constant L such that

‖a(x,θ)‖ ≤ L (1 + ‖x‖) .

(A2) There exists a constant L such that

‖a(x,θ)− a(y,θ)‖ ≤ L ‖x− y‖ .

(A3) Under H0, suptE ‖Xt‖p <∞ for all p > 0.

(A4) nh2n → 0 as n→∞.

Instead of the residuals used in Lee et al. (2010), we are going to consider the i.i.d random

vectors ηi = σ
(
W ti −W ti−1

)
h
−1/2
n and the residuals of the form η̂i =

(
Xti −Xti−1

)
h
−1/2
n .

Note that the former have d-dimensional multivariate normal distributions with mean 0 and
covariance matrix S. Based upon the residuals η̂i, we define our test statistic as

Tn =
1√
n

max
1≤k≤n

∥∥∥∥∥vech
(

k∑
i=1

η̂iη̂
′

i −
k

n

n∑
i=1

η̂iη̂
′

i

)∥∥∥∥∥
2

, (2.1)
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where the vech operator on a matrix stacks the lower triangular portion of a d × d matrix

as a d(d+1)
2 × 1 vector. As an illustration, for a symmetric matrix

X =

[
a b
b c

]
,

vech(X) = (a, b, c)
′

(Henderson and Searle, 1979). Finally, we denote by li and l̂i the
d(d+1)

2 -dimensional random vectors vech
(
ηiη

′

i

)
and vech

(
η̂iη̂

′

i

)
, respectively.

The intuition behind (2.1) is simple: because Ŝn = 1
n

∑n
i=1 η̂iη̂

′

i is a consistent estimator

of S, one can expect that both Ŝn and Ŝk would be close to S under H0, and hence, the
bracketed term inside of (2.1),

k√
n

(
Ŝk − Ŝn

)
=

k√
n

(
1

k

k∑
i=1

η̂iη̂
′

i −
1

n

n∑
i=1

η̂iη̂
′

i

)
,

would converge to a multivariate Brownian bridge. See, for example, Lee et al. (2003).

Note that our residual η̂
′

i and the test statistic Tn do not depend on the functional form of
a(x; ·) and the parameter value of θ. This would allow us for a great deal of flexibility in
simulation/empirical study. We also remark that our main results would hold for the same
type of residuals in Lee et al. (2010) with a slight modification.

Our first result is concerned with the negligibility of the difference between li and l̂i.

Lemma 2.1 Assume that (A1) - (A4) hold. Under H0,

1√
n

max
1≤k≤n

∥∥∥∥∥
k∑

i=1

l̂i −
k∑

i=1

li

∥∥∥∥∥ = oP (1). (2.2)

Proof. See Appendix for the proof. �

Before we state our main result, we define the d(d+1)
2 -dimensional Brownian bridge with

covariance matrix Γ by

B0
Γ(t) = Γ1/2B0(t),

where B0(t) is a d(d+1)
2 -dimensional standard Brownian bridge.

Theorem 2.1 Assume that (A1) - (A4) hold. Under H0,

Tn
w→ sup

0≤u≤1

∥∥B0
Γ(u)

∥∥2 as n→∞,

where the covariance matrix Γ = V ar(li).

Proof. Since li’s are d(d+1)
2 -dimensional i.i.d. random vectors, the functional central limit

theorem can be applied to yield

1√
n

[nu]∑
i=1

li
w→ Γ1/2B(u) as n→∞, (2.3)
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where B(t) is a d(d+1)
2 -dimensional standard Brownian motion. Combining Lemma 2.1 and

(2.3), we establish the theorem. �

By defining

Tn(Γ) =
1√
n

max
1≤k≤n

∥∥∥∥∥Γ−1/2vech
(

k∑
i=1

η̂iη̂
′

i −
k

n

n∑
i=1

η̂iη̂
′

i

)∥∥∥∥∥
2

,

we obtain the following as an immediate consequence of Theorem 2.1.

Corollary 2.1 Assume that (A1) - (A4) hold. Under H0,
i) if the covariance matrix Γ is invertible,

Tn(Γ)
w→ sup

0≤u≤1

∥∥B0(u)
∥∥2 as n→∞,

ii) and, in addition, if Γ̂ is a consistent estimator of Γ,

Tn

(
Γ̂
)

w→ sup
0≤u≤1

∥∥B0(u)
∥∥2 as n→∞.

3. Simulation study

In this section, we evaluate the performance of the cusum of squares test through a sim-
ulation study. We consider the two-dimensional diffusion processes of the form(

dX1t

dX2t

)
=

(
µ1 − β1X1t

µ2 − β2X2t

)
dt+ S1/2

(
dW1t

dW2t

)
with the following 6 scenarios:

1. (µ1, µ2, β1, β2)′ = (0, 0, 0, 0)′ and S =

[
1 0
0 1

]
,

2. (µ1, µ2, β1, β2)′ = (1,−1, 0, 0)′ and S =

[
1 0
0 1

]
,

3. (µ1, µ2, β1, β2)′ = (1, 1, 0.5, 0)′ and S =

[
1 0
0 1

]
,

4. (µ1, µ2, β1, β2)′ = (0, 0, 0, 0)′ and S =

[
2 1
1 1

]
,

5. (µ1, µ2, β1, β2)′ = (1,−1, 0, 0)′ and S =

[
2 1
1 1

]
,

6. (µ1, µ2, β1, β2)′ = (1, 1, 0.5, 0)′ and S =

[
2 1
1 1

]
.
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Table 3.1 (µ1, µ2, β1, β2)′ and S do not change.

h = 1/n h = n−0.6

n 100 500 1000 100 500 1000
Scenario 1 0.022 0.031 0.040 0.009 0.048 0.052
Scenario 2 0.021 0.049 0.046 0.023 0.053 0.041
Scenario 3 0.025 0.037 0.055 0.017 0.034 0.059
Scenario 4 0.022 0.044 0.049 0.015 0.046 0.057
Scenario 5 0.021 0.044 0.044 0.027 0.038 0.037
Scenario 6 0.022 0.031 0.046 0.024 0.043 0.064

Table 3.2 (µ1, µ2, β1, β2)′ changes at n/2 and S does not change.

h = 1/n h = n−0.6

n 100 500 1000 100 500 1000
Scenario 1 → 2 0.029 0.040 0.063 0.028 0.057 0.044
Scenario 1 → 3 0.021 0.052 0.049 0.027 0.044 0.054
Scenario 4 → 5 0.022 0.044 0.042 0.047 0.079 0.071
Scenario 4 → 6 0.026 0.052 0.050 0.033 0.054 0.068

Table 3.3 (µ1, µ2, β1, β2)′ does not change and S changes at nτ0.

h = 1/n h = n−0.6

τ0 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Scenario 1 → 4
n 100 0.092 0.702 0.864 0.675 0.091 0.092 0.710 0.882 0.676 0.068

500 0.860 1.000 1.000 1.000 0.900 0.875 1.000 1.000 1.000 0.858
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Scenario 2 → 5
n 100 0.065 0.711 0.878 0.670 0.082 0.061 0.578 0.812 0.653 0.088

500 0.861 1.000 1.000 1.000 0.864 0.797 1.000 1.000 1.000 0.870
1000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Scenario 3 → 6
n 100 0.076 0.676 0.868 0.646 0.081 0.051 0.599 0.815 0.631 0.062

500 0.874 1.000 1.000 1.000 0.873 0.810 1.000 1.000 1.000 0.839
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

Table 3.4 (µ1, µ2, β1, β2)′ and S change at n/2.

h = 1/n h = n−0.6

n 100 500 1000 100 500 1000
Scenario 1 → 5 0.875 1.000 1.000 0.762 1.000 1.000
Scenario 1 → 6 0.868 1.000 1.000 0.863 1.000 1.000
Scenario 4 → 2 0.901 1.000 1.000 0.926 1.000 1.000
Scenario 4 → 3 0.878 1.000 1.000 0.876 1.000 1.000
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For easier exposition, we assume that the two processes are independent in the first half
scenarios but dependent with increased volatility in the latter. In order to calculate the
empirical sizes and powers, we examine the following 4 cases:

1. Neither (µ1, µ2, β1, β2)′ nor S changes.

2. (µ1, µ2, β1, β2)′ changes at n/2 and S does not change.

3. (µ1, µ2, β1, β2)′ does not change and S changes at nτ0.

4. Both (µ1, µ2, β1, β2)′ and S change at n/2.

Each simulation result is summarized in Tables 3.1 through 3.4. Here we have used the test
statistic in Corollary 2.1 at the nominal level of α = 0.05, i.e., the critical value of 3.004
(Table 1 of Lee et al., 2003), with the sample sizes of n = 100, 500, 1000 and the sampling
time lengths of h = n−1 and h = n−0.6. As illustrated in Tables 3.1 and 3.2, there seems
to be no severe size distortion except for n = 100. And Tables 3.3 and 3.4 show that the
empirical powers are close to 1 except for the case when n = 100 and the changes occur at τ0
= 0.1 or 0.9. Although not included in Table 3.3, almost the same result could be obtained
for the opposite directions, say, scenario 4 → 1, etc. To conclude, the cusum of squares test
is a proper tool to investigate the joint stability of the covariance matrix parameters of the
multidimensional diffusion processes.

Appendix.

Proof of Lemma 2.1 First, note that

η̂ij η̂il − ηijηil = (η̂ij − ηij) (η̂il − ηil) + (η̂ij − ηij) ηil + (η̂il − ηil) ηij .

Hence the left-hand side of (2.2) can be bounded as follows:

1√
n

max
1≤k≤n

∥∥∥∥∥
k∑

i=1

l̂i −
k∑

i=1

li

∥∥∥∥∥
≤
√
d max
1≤j≤l≤d

(
1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

(η̂ij η̂il − ηijηil)

∣∣∣∣∣
)

≤
√
d max
1≤j≤d

[
1√
n

max
1≤k≤n

k∑
i=1

(η̂ij − ηij)2
]

(A.1)

+
√
d max
1≤j,l≤d

[
1√
n

max
1≤k≤n

k∑
i=1

(η̂ij − ηij) ηil

]
.
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For the term inside the first square bracket of (A.1), it holds that

1√
n

max
1≤k≤n

k∑
i=1

(η̂ij − ηij)2 =
1√
n

n∑
i=1

(η̂ij − ηij)2

≤ 1√
n

n∑
i=1

‖η̂i − ηi‖
2

≤ 1√
n

n∑
i=1

∫ ti

ti−1

L2 (1 + ‖Xs‖)2 ds.

Therefore, under assumptions (A1), (A3), and (A4), we obtain that

E

[
1√
n

n∑
i=1

∫ ti

ti−1

L2 (1 + ‖Xs‖)2 ds

]
= O

(√
nh2n

)
= o(1). (A.2)

And, for the term inside the second square bracket of (A.1), we put

∆i =

∫ ti

ti−1

{
a(Xs;θ)− a(Xti−1

;θ)
}
ds, Ai = a(Xti−1

;θ).

Since

η̂i − ηi =
1√
hn

∫ ti

ti−1

a(Xs;θ)ds

=
1√
hn

∫ ti

ti−1

{
a(Xs;θ)− a(Xti−1 ;θ)

}
ds+

√
hna(Xti−1 ;θ),

we can write

(η̂ij − ηij) ηil =
1

hn
∆ijηil +

√
hnAijηil.

By using the functional central limit theorem and the fact that
∑k

i=1Aijηil is a martingale,
we get

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

√
hnAijηil

∣∣∣∣∣ = oP (1). (A.3)

Moreover,

E

[
1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

1√
hn

∆ijηil

∣∣∣∣∣
]
≤ 1√

n
E

 max
1≤k≤n

(
k∑

i=1

h−1n ∆2
ij

)1/2( k∑
i=1

η2il

)1/2


≤ 1√
n

(
E

[
n∑

i=1

h−1n ∆2
ij

])1/2(
E

[
n∑

i=1

η2il

])1/2

(A.4)

= O
(√

nh2n

)
= o(1).
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Here, in the last step, we have used the fact that

E
[
∆2

ij

]
≤ E

[
‖∆i‖2

]
≤ hn

∫ ti

ti−1

E
[∥∥a(Xs;θ)− a(Xti−1

;θ)
∥∥2] ds

≤ hn
∫ ti

ti−1

E
[
L2
∥∥Xs −Xti−1

∥∥2] ds ≤ Ch3n
(Yoshida, 1992). Now it follows from (A.3) and (A.4) that

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

(η̂ij − ηij) ηil

∣∣∣∣∣ = oP (1). (A.5)

Combining (A.1), (A.2), and (A.5) completes the proof. �
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