커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정

Estimating GARCH models using kernel machine learning

  • 황창하 (단국대학교 정보통계학과) ;
  • 신사임 (단국대학교 정보통계학과)
  • 투고 : 2010.03.22
  • 심사 : 2010.05.17
  • 발행 : 2010.05.31

초록

커널기계 기법은 최근 대용량 또는 고차원 비선형 자료를 분석하는 방법으로 인기를 많이 얻고 있다. 본 논문에서는 주식시장 수익률의 조건부 변동성을 예측하기 위한 일반화 이분산자기회귀모형을 추정하기 위해 커널기계 기법을 사용한다. 일반화 이분산자기회귀모형은 자료가 정규분포를 따른다고 가정한 후 주로 최대우도법을 사용하여 추정된다. 본 논문에서는 꼬리가 두꺼운 분포를 갖는 금융시계열자료의 변동성을 추정할 때 커널기계 기법이 최대우도법과 서포트벡터기계 보다 더 정확한 예측능력을 가진다는 것을 보이고자 한다.

Kernel machine learning is gaining a lot of popularities in analyzing large or high dimensional nonlinear data. We use this technique to estimate a GARCH model for predicting the conditional volatility of stock market returns. GARCH models are usually estimated using maximum likelihood (ML) procedures, assuming that the data are normally distributed. In this paper, we show that GARCH models can be estimated using kernel machine learning and that kernel machine has a higher predicting ability than ML methods and support vector machine, when estimating volatility of financial time series data with fat tail.

키워드

참고문헌

  1. 김명직, 장국현 (2002). <금융시계열분석>, 경문사, 서울.
  2. Audrino, F. and Buhlmann, P. (2009). Splines for financial volatility. Journal of the Royal Statistical Society B, 71, 655-670. https://doi.org/10.1111/j.1467-9868.2009.00696.x
  3. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
  4. Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772.
  5. Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334.
  6. Juutilainen, I. and Roning, J. (2006). Adaptive modelling of conditional variance function. Proceedings of 17th Symposium of IASC (COMPSTAT 2006), Rome, Italy, 1517-1524.
  7. Mercer, J. (1909). Function of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
  8. Pirez-Cruz, F., Afonso-Rodriguez, J. A. and Giner, J. (2003). Estimating GARCH models using support vector machines. Quantitative Finance, 3, 163-172. https://doi.org/10.1088/1469-7688/3/3/302
  9. Shim, J., Park, H. and Hwang, C. (2009). A kernel machine for estimation of mean and volatility functions. Journal of Korean Data & Information Science Society, 20, 905-912.
  10. Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
  11. Smola, A. J. and Schoelkopf, B.(1998). A tutorial on support vector regression. NeuroCOLT2 Technical Report NC-TR-98-030, Royal Hollow College, University of London, UK.
  12. Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692.