참고문헌
- 김명직, 장국현 (2002). <금융시계열분석>, 경문사, 서울.
- Audrino, F. and Buhlmann, P. (2009). Splines for financial volatility. Journal of the Royal Statistical Society B, 71, 655-670. https://doi.org/10.1111/j.1467-9868.2009.00696.x
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
- Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772.
- Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334.
- Juutilainen, I. and Roning, J. (2006). Adaptive modelling of conditional variance function. Proceedings of 17th Symposium of IASC (COMPSTAT 2006), Rome, Italy, 1517-1524.
- Mercer, J. (1909). Function of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
- Pirez-Cruz, F., Afonso-Rodriguez, J. A. and Giner, J. (2003). Estimating GARCH models using support vector machines. Quantitative Finance, 3, 163-172. https://doi.org/10.1088/1469-7688/3/3/302
- Shim, J., Park, H. and Hwang, C. (2009). A kernel machine for estimation of mean and volatility functions. Journal of Korean Data & Information Science Society, 20, 905-912.
- Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
- Smola, A. J. and Schoelkopf, B.(1998). A tutorial on support vector regression. NeuroCOLT2 Technical Report NC-TR-98-030, Royal Hollow College, University of London, UK.
- Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692.