DOI QR코드

DOI QR Code

The Measurement of the LIDAR Ratio by Using the Rotational Raman LIDAR

  • Choi, Sung-Chul (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Baik, Sung-Hoon (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Park, Seung-Kyu (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Cha, Hyung-Ki (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Song, Im-Kang (Department of Physics, Kongju National University) ;
  • Kim, Duk-Hyeon (Division of Cultural Studies, Hanbat National University)
  • Received : 2010.07.02
  • Accepted : 2010.08.24
  • Published : 2010.09.25

Abstract

The rotational Raman LIDAR technique has been used to accurately measure aerosol optical properties such as backscatter coefficient, extinction coefficient, and LIDAR ratio. In the case of the vibrational Raman technique, the ${\AA}$ngstr$\ddot{o}$om exponent, which has wavelength dependence on the particle properties, is assumed to obtain the extinction coefficient. However, this assumed ${\AA}$ngstr$\ddot{o}$m exponent can cause systematic errors in retrieving aerosol optical properties. In the case of the rotational Raman technique, the aerosol optical properties can be measured without any assumptions about the ${\AA}$ngstr$\ddot{o}$m exponent. In this paper, the LIDAR ratio was measured by using the rotational Raman LIDAR and vibrational Raman LIDAR in the troposphere. And, the LIDAR ratios measured by these two methods were compared.

Keywords

References

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate process: a global perspective,” Weather Rev. 114, 1167-1199 (1986). https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423-430 (1992).
  3. W.-N. Chen, C.-W. Chiang, and J.-B. Nee, “LIDAR ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470-6476 (2002). https://doi.org/10.1364/AO.41.006470
  4. M. McGill, D. Hiavka, W. Hart, V. S. Scott, J. Spinhirne, and B. Schmid, “Cloud physics LIDAR: instrument description and initial measurement results,” Appl. Opt. 41, 3725-3734 (2002). https://doi.org/10.1364/AO.41.003725
  5. J. D. Klett, “Stable analytical inversion solution for processing LIDAR return,” Appl. Opt. 20, 211-220 (1981). https://doi.org/10.1364/AO.20.000211
  6. F. G. Fernald, “Analysis of atmospheric LIDAR observation: some comments,” Appl. Opt. 23, 652-653 (1984). https://doi.org/10.1364/AO.23.000652
  7. J. D. Klett, “LIDAR inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985). https://doi.org/10.1364/AO.24.001638
  8. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman LIDAR,” Opt. Lett. 15, 746-748 (1990). https://doi.org/10.1364/OL.15.000746
  9. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter LIDAR,” Appl. Opt. 31, 7113-7131 (1992). https://doi.org/10.1364/AO.31.007113
  10. D. G. Kaskaoutis, H. D. Kamabzidis, A. D. Adamopoulos, and P. A. Kassomenos, “On the characterization of aerosols using the Ångström exponent in the Athens area,” J. Atmo. Solar-Terr. Phys. 68, 2147-2163 (2006). https://doi.org/10.1016/j.jastp.2006.07.008
  11. D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficient,” Opt. Lett. 30, 1728-1730 (2005). https://doi.org/10.1364/OL.30.001728
  12. K. S. Shifrin, “Simple relationships for the angstrom parameter of disperse systems,” App. Opt. 21, 4480-4485 (1995).