References
- W. Xu, J. Xiao, D. Wang, J. Zhang, and J.-G. Zhang, ‘Effects of nonaqueous electrolytes on the performance of lithium/air batteries’ J. Electrochem. Soc., 157, A219 (2010). https://doi.org/10.1149/1.3269928
- Y. Fu, C. Chen, C. Qiu, and X. Ma, ‘Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries’ J. Appl. Electrochem., 39, 2597 (2009). https://doi.org/10.1007/s10800-009-9949-4
- T. Sugimoto, M. Kikuta, E. Eshiko, M. Kono, and M. Ishikawa, ‘Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties’ J. Power Sources, 183, 436 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.036
- L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemistry of Solids, 69, 1232 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
- S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and B. Terada, ‘Imidazolium-based room-temperature ionic liquid for lithium secondary batteries’ J. Electrochem. Soc., 154, A173 (2007). https://doi.org/10.1149/1.2426871
- M. Holzapfel, C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig, H. Buqa, and P. Novak, ‘Stabilization of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study’ Carbon, 43, 1488 (2005). https://doi.org/10.1016/j.carbon.2005.01.030
- K. Hayashi, Y. Nemoto, K. Akuto, and Y. Sakurai, ‘Alkylated imidazolium salt electrolyte for lithium cells’ J. Power Sources, 146, 689 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.154
- M. Holzapfel, C. Jost, and P. Novak, ‘Stable cycling of graphite in an ionic based electrolyte’ Chem. Commun., 2098 (2004).
- B. Garcia, S. Lavallee, G. Perron, C. Michot, and M. Armand, ‘Room temperature molten salts as lithium battery electrolyte’ Electrochimica Acta, 49, 4583 (2004). https://doi.org/10.1016/j.electacta.2004.04.041
- A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, ‘Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications’ J. Electrochem. Soc., 146, 1687 (1999). https://doi.org/10.1149/1.1391827
- F. F. C. Bazito, Y. Kawano, and R. M. Torresi, ‘Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium’ Electrochimica Acta, 52, 6427 (2007). https://doi.org/10.1016/j.electacta.2007.04.064
- J. Fuller, R. T. Carlin, and R. A. Osteryoung, ‘The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties’ J. Electrochem. Soc., 144, 3881 (1997). https://doi.org/10.1149/1.1838106
- V. R. Koch, C. Nanjundiah, G. B. Appetecch, and B. Scrosati, ‘The interfacial stability of Li with two new solvent-free ionic liquids: 1,2-dimethly-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995). https://doi.org/10.1149/1.2044332
- M. J. Monteiro, F. F. C. Bazito, and L. J. A. Siqueira, ‘Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid’ J. Phys. Chem. B, 112, 2102 (2008). https://doi.org/10.1021/jp077026y
- Y. Saito, T. Umecky, U. Niwa, T. Sakai, and S. Maeda, ‘Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent’ J. Phys. Chem. B, 111, 11794 (2007). https://doi.org/10.1021/jp072998r
- Y. Yang, K. Zaghib, A. Guerfi, F. F. C. Bazito, R. M. Torresi, and J. R. Dahn, ‘Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials’ Electrochimica Acta, 52, 6346 (2007). https://doi.org/10.1016/j.electacta.2007.04.067
-
S. Lee, H. Yong, S. Kim, J. Kim, and S. Ahn, ‘Performance and thermal stability of
$LiCoO_2$ cathode modified with ionic liquid’ J. Power Sources, 146, 732 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.165 - S. Lee, H. Yong, Y. Lee, S. Kim, and S. Ahn, ‘Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries’ J. Phys. Chem. B, 109, 13663 (2005). https://doi.org/10.1021/jp051974m
-
R. Yazami and D. Guerard, ‘Some aspects on the preparation, structure and physical and electrochemical properties of
$Li_xC_6$ ’ J. Power Sources, 43-44, 39 (1993). - E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
- H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000). https://doi.org/10.1016/S0304-3991(99)00139-4
- S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.065
- S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001). https://doi.org/10.1149/1.1387981
- V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Scrosati, ‘The interfacial stability of Li with two new solventfree ionic liquids: 1,2-Dimethyl-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995). https://doi.org/10.1149/1.2044332
- T. E. Sutto, T. T. Duncan, and T. C. Wong, ‘X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids’ Electrochimica Acta, 54, 5648 (2009). https://doi.org/10.1016/j.electacta.2009.05.026
- L. L. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In-situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemisty of Solids, 69, 1232 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
- T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 386221 (1995). https://doi.org/10.1016/0022-0728(95)03907-X
- A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997). https://doi.org/10.1016/S0378-7753(96)02556-6
-
M. R. Wagner, J. H. Albering, K. -C. Moeller, J. O. Besenhard, and M. Winter ‘XRD evidence for the electrochemical formation of
$Li^+(PC)_y{C_n}^– $ in PC-based electrolytes’ Electrochemistry Communications, 7, 947 (2005). https://doi.org/10.1016/j.elecom.2005.06.009 - Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Phys. Chem. C, 113, 8948 (2009). https://doi.org/10.1021/jp9022458