DOI QR코드

DOI QR Code

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation

BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입

  • 이유신 (순천향대학교 나노화학공학과) ;
  • 정순기 (순천향대학교 나노화학공학과) ;
  • 이헌영 (주식회사 이아이지) ;
  • 김지수 (주식회사 이아이지)
  • Received : 2010.07.15
  • Accepted : 2010.07.22
  • Published : 2010.08.28

Abstract

In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).

흑연과 1-buthyl-2,3-dimethylimidazolium(BDMI)계 이온성 액체의 계면 반응을 이해하기 위하여 lithium bis(fluorosulfonyl)imide(LiTFSI)가 용해된 BDMI-TFSI 용액 중에서 전기화학 원자간력 현미경(electrochemical atomic force microscopy, ECAFM)을 이용하여 순환 전압전류법 전후에 있어서의 고배향성 열분해 흑연(highly oriented pyrolytic graphite, HOPG)의 표면을 in-situ로 관찰하였다. HOPG 전극에서 리튬의 가역적인 삽입과 탈리반응은 진행되지 않았으며, $BDMI^+$ 양이온의 삽입에 의한 blister의 형성 및 그라펜 층의 파괴만이 관찰되었다. 한편, $BDMI^+$ 양이온의 삽입 반응은 농도가 4.90 mol/kg인 LiTFSI-propylene carbonate(PC)를 15 wt% 함유하고 있는 BDMI-TFSI계에서는 일어나지 않았으며, 이 경우에는 가역적인 리튬의 삽입과 탈리반응이 진행 되었다. ECAFM 결과는 고농도의 PC계 용액이 solid electrolyte interface(SEI)를 형성함으로 인해 $BDMI^+$ 양이온의 삽입을 막는 매우 효과적인 첨가제임을 나타내었다.

Keywords

References

  1. W. Xu, J. Xiao, D. Wang, J. Zhang, and J.-G. Zhang, ‘Effects of nonaqueous electrolytes on the performance of lithium/air batteries’ J. Electrochem. Soc., 157, A219 (2010). https://doi.org/10.1149/1.3269928
  2. Y. Fu, C. Chen, C. Qiu, and X. Ma, ‘Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries’ J. Appl. Electrochem., 39, 2597 (2009). https://doi.org/10.1007/s10800-009-9949-4
  3. T. Sugimoto, M. Kikuta, E. Eshiko, M. Kono, and M. Ishikawa, ‘Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties’ J. Power Sources, 183, 436 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.036
  4. L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemistry of Solids, 69, 1232 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
  5. S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and B. Terada, ‘Imidazolium-based room-temperature ionic liquid for lithium secondary batteries’ J. Electrochem. Soc., 154, A173 (2007). https://doi.org/10.1149/1.2426871
  6. M. Holzapfel, C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig, H. Buqa, and P. Novak, ‘Stabilization of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study’ Carbon, 43, 1488 (2005). https://doi.org/10.1016/j.carbon.2005.01.030
  7. K. Hayashi, Y. Nemoto, K. Akuto, and Y. Sakurai, ‘Alkylated imidazolium salt electrolyte for lithium cells’ J. Power Sources, 146, 689 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.154
  8. M. Holzapfel, C. Jost, and P. Novak, ‘Stable cycling of graphite in an ionic based electrolyte’ Chem. Commun., 2098 (2004).
  9. B. Garcia, S. Lavallee, G. Perron, C. Michot, and M. Armand, ‘Room temperature molten salts as lithium battery electrolyte’ Electrochimica Acta, 49, 4583 (2004). https://doi.org/10.1016/j.electacta.2004.04.041
  10. A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, ‘Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications’ J. Electrochem. Soc., 146, 1687 (1999). https://doi.org/10.1149/1.1391827
  11. F. F. C. Bazito, Y. Kawano, and R. M. Torresi, ‘Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium’ Electrochimica Acta, 52, 6427 (2007). https://doi.org/10.1016/j.electacta.2007.04.064
  12. J. Fuller, R. T. Carlin, and R. A. Osteryoung, ‘The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties’ J. Electrochem. Soc., 144, 3881 (1997). https://doi.org/10.1149/1.1838106
  13. V. R. Koch, C. Nanjundiah, G. B. Appetecch, and B. Scrosati, ‘The interfacial stability of Li with two new solvent-free ionic liquids: 1,2-dimethly-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995). https://doi.org/10.1149/1.2044332
  14. M. J. Monteiro, F. F. C. Bazito, and L. J. A. Siqueira, ‘Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid’ J. Phys. Chem. B, 112, 2102 (2008). https://doi.org/10.1021/jp077026y
  15. Y. Saito, T. Umecky, U. Niwa, T. Sakai, and S. Maeda, ‘Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent’ J. Phys. Chem. B, 111, 11794 (2007). https://doi.org/10.1021/jp072998r
  16. Y. Yang, K. Zaghib, A. Guerfi, F. F. C. Bazito, R. M. Torresi, and J. R. Dahn, ‘Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials’ Electrochimica Acta, 52, 6346 (2007). https://doi.org/10.1016/j.electacta.2007.04.067
  17. S. Lee, H. Yong, S. Kim, J. Kim, and S. Ahn, ‘Performance and thermal stability of $LiCoO_2$ cathode modified with ionic liquid’ J. Power Sources, 146, 732 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.165
  18. S. Lee, H. Yong, Y. Lee, S. Kim, and S. Ahn, ‘Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries’ J. Phys. Chem. B, 109, 13663 (2005). https://doi.org/10.1021/jp051974m
  19. R. Yazami and D. Guerard, ‘Some aspects on the preparation, structure and physical and electrochemical properties of $Li_xC_6$’ J. Power Sources, 43-44, 39 (1993).
  20. E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
  21. H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000). https://doi.org/10.1016/S0304-3991(99)00139-4
  22. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.065
  23. S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001). https://doi.org/10.1149/1.1387981
  24. V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Scrosati, ‘The interfacial stability of Li with two new solventfree ionic liquids: 1,2-Dimethyl-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995). https://doi.org/10.1149/1.2044332
  25. T. E. Sutto, T. T. Duncan, and T. C. Wong, ‘X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids’ Electrochimica Acta, 54, 5648 (2009). https://doi.org/10.1016/j.electacta.2009.05.026
  26. L. L. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In-situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemisty of Solids, 69, 1232 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
  27. T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 386221 (1995). https://doi.org/10.1016/0022-0728(95)03907-X
  28. A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997). https://doi.org/10.1016/S0378-7753(96)02556-6
  29. M. R. Wagner, J. H. Albering, K. -C. Moeller, J. O. Besenhard, and M. Winter ‘XRD evidence for the electrochemical formation of $Li^+(PC)_y{C_n}^– $ in PC-based electrolytes’ Electrochemistry Communications, 7, 947 (2005). https://doi.org/10.1016/j.elecom.2005.06.009
  30. Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Phys. Chem. C, 113, 8948 (2009). https://doi.org/10.1021/jp9022458