DOI QR코드

DOI QR Code

폴리아닐린-이온성 액체 복합체의 물리적전기화학적 특성

Physical and Electrochemical Properties of Polyaniline-Ionic Liquid Composite

  • Bang, Joo-Yong (Probiond Co., Ltd.) ;
  • Jeong, Woo-Sung (Probiond Co., Ltd.) ;
  • Park, Hyung-Soon (Probiond Co., Ltd.) ;
  • Chung, Kyung-Ho (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Nath, Narayan Chandra Deb (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee, Jae-Joon (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Cha, Eun-Hee (Research Center for Convergence Technology, Hoseo University) ;
  • Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University)
  • 투고 : 2010.07.14
  • 심사 : 2010.07.29
  • 발행 : 2010.08.28

초록

전도성 고분자로 널리 알려진 폴리아닐린과 액체전해질의 핵심 재료인 이온성 액체와의 복합체를 형성시키고 이들의 물리적, 전기화학적인 특성을 조사되었다. 이미다졸늄 이온성 액체 (1-methyl-3-propylimidazolium iodide, PMI-I)에 비전도성 폴리아닐린 (Emeraldine Base)을 30 wt%이상 첨가하였을 때 준고형화 현상이 나타났고, 이온성 액체의 이미다졸늄 양이온의 방향족 고리와 폴리아닐린의 벤족기와의 ${\pi}-{\pi}$ 자기상호조립에 의한 약한 도핑작용을 통해 섬유상 구조를 나타내었으며, 전도도의 변화율은 80%이상 유지하였다.

Polyaniline-ionic liquid composite was prepared and investigated its physical and electrochemical properties. The quasi-solidification was presented in imidazolium-based ionic liquid (1-methly-3-propylimidazolium iodide, PMI-I) containing above 30 wt% of polyaniline (emeraldine base), which exhibited around 80% decrease of conductivity compared to pristine ionic liquid, resulting in fibril structure trough ${\pi}-{\pi}$ self-assembled of imidazolium aromatic ring of ionic liquid on polyaniline framework.

키워드

참고문헌

  1. M. Gratzel ‘Dye-sensitized solar cell’ J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  2. S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’, Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  3. B. O’Regan and M. Grätzel, ‘A low-cost, high efficiency solar cell based on dye-sensitized colloidal $TiO_2$ film’, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  4. S. Noda, K. Nagano, E. Inoue, T. Egi, T. Nakashima, N. Imawaka, M. Kanayama, S. Iwata, K. Toshima, K. Nakada, and K. Yoshino, ‘Development of large size dye-sensitized solar cell modules with high temperature durability’, Syn. Metals, 159, 2355 (2009). https://doi.org/10.1016/j.synthmet.2009.10.002
  5. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Gratzel, ‘Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells’, J. Am. Chem. Soc., 125, 1166 (2003). https://doi.org/10.1021/ja029294+
  6. E. Stathatosa, P. Lianos,V. Jovanovski, and B. Orel, ‘Dyesensitized photoelectrochemical solar cells based on nanocomposite organic-inorganic materials’, J. Photochem. Photobio. A: Chem., 169, 57 (2005). https://doi.org/10.1016/j.jphotochem.2004.06.007
  7. Z. Huo, S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan, and X. Fang, ‘Nanocomposite gel electrolyte with large enhanced charge transport porperties of an I3-/I- redox couple for quasi-solid-state dye-densitized solar cell’, Solar Energy Mater. Solar Cells, 91, 1959 (2007). https://doi.org/10.1016/j.solmat.2007.08.003
  8. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S. H. Lee, ‘Metallic transport in polyaniline’, Nature, 441, 65 (2006). https://doi.org/10.1038/nature04705
  9. S. Y. Cha, Y. G. Lee, M. S. Kang, and Y. S. Kang, ‘Correlation between ion conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte’, J. Photochem. Photobio. A. Chem., 211, 193 (2010). https://doi.org/10.1016/j.jphotochem.2010.02.014