DOI QR코드

DOI QR Code

Effects of Surfactants on the Growth of Anodic Nanoporous Niobium Oxide

양극산화를 통한 다공성 니오븀 산화물 성장의 계면활성제 영향

  • Yoo, Jeong-Eun (Department of Chemical Engineering, Inha University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2010.06.14
  • Accepted : 2010.08.22
  • Published : 2010.08.28

Abstract

Effects of Cetyl Trimethyl Ammonium Bromide (CTAB), which is a kind of cationic surfactants, and Sodium Dodecyl Sulfate (SDS), which is a kind of anionic surfactants on the anodic formation of nanoporous niobium oxide were compared. The addition of SDS could protect the surface from dissolution for long time, leading to the formation of niobium oxide with a double thickness (~400 nm) compared to that prepared without surfactant, whereas dissolution seriously occurred in the solution containing CTAB. The different behaviors were attributed to the interaction between the surfactants with positive (or negative) charge and positively charged niobium oxide.

본 연구에서는 양극 산화를 통해 얻어지는 다공성 니오븀 산화물 제조에 양이온 계면활성제인 Cetyl Trimethyl Ammonium Bromide (CTAB)와 음이온 계면활성제인 Sodium Dodecyl Sulfate (SDS)의 영향을 비교 관찰하였다. SDS가 전해질에 첨가되어 제조된 다공성 니오븀 산화 막은 표면에 장시간 용출이 발생하지 않았고, 계면활성제가 첨가되지 않고 제조된 다공성 니오븀 산화막의 두께와 비교 하였을 때 두께가 두 배 이상 증가된 값을 얻을 수 있었다. 하지만 CTAB가 전해질에 첨가되어 제조된 다공성 니오븀 산화물의 표면에는 용출이 일어났다. 이러한 차이점을 양성으로 대전된 니오븀산화물과 음이온/또는 양이온 계면활성제 사이의 상호작용에 근거하여 설명하였다.

Keywords

References

  1. R. katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, ‘Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor ($ZrO_2$, $TiO_2$, ZnO, $Nb_2O_5$, $SnO_2$, $In_2O_3$) Films’ J.Phys. Chem B, 108, 4818 (2004). https://doi.org/10.1021/jp031260g
  2. V. Fischer, H. Starmer, D. Gerthsen, M. Stenzel, H. Zillgen, and E. Ivers-Tiffke, ‘Niobium as new material for electrolyte capacitors with nanoscale dielectric oxide layers’ in Proc. 7th Int. Conf. Properties Ap- plications Dielectric Materials, 3, 1134 (2003).
  3. S. Rho, D. Jahng, J. H. Lim, J. Choi, J. H. Chang, S. C. Lee, and K. J. Kim, ‘Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide’ Biosens. Bioelectron, 23, 852 (2008). https://doi.org/10.1016/j.bios.2007.09.001
  4. I. C. M. S. Santos, L. H. Loureiro, M. F. P. Silva, and A. M. V. Cavaleiro, ‘Studies on the hydrothermal synthesis of niobium oxides’ Polyhedron, 21, 2009 (2002). https://doi.org/10.1016/S0277-5387(02)01136-1
  5. D. M. Antonelli, ‘Synthesis of macro-mesoporous niobium oxide molecular sieves by a ligand-assisted vesicle templating strategy’ Microporous Mesoporous Mater., 33, 209, (1999). https://doi.org/10.1016/S1387-1811(99)00139-0
  6. D. M. Antonelli, and Y. J. Ying, ‘Synthesis of hexagonally packed mesoporous $TiO_2$ by a modified sol-gel method’ Angew. Chem. Int. Ed. Engl., 34, 2014 (1995). https://doi.org/10.1002/anie.199520141
  7. D. Velten, E. Eisenbarth, N. Schanne, and J. Breme, ‘Biocompatible $Nb_2O_5$ thin films prepared by means of the sol-gel process’ Journal of Materials Science: Materials in Medicine, 15, 457 (2004). https://doi.org/10.1023/B:JMSM.0000021120.86985.f7
  8. R. L. Karlinsey, ‘Preparation of self-organized niobium oxide microstructures via potentiostatic anodization’ Electrochem. Commun., 7, 1190 (2005). https://doi.org/10.1016/j.elecom.2005.08.027
  9. J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim, and M. A. Cho, ‘Porous niobium oxide films prepared by anodization in $HF/H_3PO_4$’ Electrochim. Acta, 51, 5502 (2006). https://doi.org/10.1016/j.electacta.2006.02.024
  10. J. Choi, J. H. Lim, J. Lee, K. and J. Kim, ‘Porous niobium oxide films prepared by anodization-annealing-anodization’ Nanotechnology, 18, 055603 (2007). https://doi.org/10.1088/0957-4484/18/5/055603
  11. H. Habazaki, Y. Oikawa, K. Fushimi, Y. Aoki, K. Shimizu, P. Skeldon, and G. E. Thompson, ‘Importance of water content in formation of porous anodic niobium oxide films in hot phosphate-glycerol electrolyte’ Electrochim. Acta, 54, 946 (2009). https://doi.org/10.1016/j.electacta.2008.08.031
  12. K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T. G. Tsai, ‘Formation of high aspect ratio macropore array on p-type silicon’ Electrochem. Soli-state Lett., 3, 489 (2000).
  13. G. Sotgiu, L. Schirone, and F. Rallo, ‘On the use of surfactants in the electrochemical preparation of porous silicon’ Thin solid films, 297, 18 (1997). https://doi.org/10.1016/S0040-6090(96)09435-7
  14. Y. H. Ogatv, A. Koyama, F. A. Harraz, M. S. Salem, and T. Sakka, ‘Electrochemical formation of porous silicon with medium-sized pores’ Electrochemistry, 75, 270 (2007). https://doi.org/10.5796/electrochemistry.75.270
  15. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, T. I. Mamonova, O. L. Orelovitch, B. Sartowska, and Yu. Yamauchi, ‘Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology’ Radiat. Meas., 43, S552 (2008). https://doi.org/10.1016/j.radmeas.2008.04.057
  16. J. E. Yoo and J. Choi, ‘Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface’ Electrochim. Acta, 55, 5142 (2010). https://doi.org/10.1016/j.electacta.2010.04.021