DOI QR코드

DOI QR Code

Identification of Cuts-specific Myogenic Marker Genes in Hanwoo by DNA Microarray

DNA Microarray 분석을 통한 한우 부위별 특이 마커 유전자의 발굴

  • Received : 2010.05.19
  • Accepted : 2010.08.04
  • Published : 2010.08.31

Abstract

Myogenic satellite cells (MSCs) are mononuclear, multipotent progenitors of adult skeletal muscle possessing a capacity of forming adipocyte-like cells (ALC). To identify the skeletal muscle type-specific myogenic and adipogenic genes during MSCs differentiation, total RNA was extracted from bovine MSCs, myotube-formed cell (MFC), and ALC from each of Beef shank, Longissimus dorsi, Deep pectoral, and Semitendinosus. DNA microarray analysis (24,000 oligo chip) comparing MSCs with MFC and ALC, respectively, revealed 135 differentially expressed genes (> 4 fold) among four cuts. Real-time PCR confirmed expression of 29 genes. Furthermore, the whole tissue sample RNAs analysis showed 6 differentially expressed genes in Beef shank. Among which, 1 gene in MSCs, 4 in MFC, and 1 in ALCs were highly expressed. This study will provide an insight for better understanding the molecular mechanism of differentiation of skeletal muscle type-specific MSCs. The identified genes may be used as marker to distinguish skeletal muscle types.

본 연구는 소의 부위별 근육에 특이하게 발현하는 유전자 마커를 발굴하여 소고기의 부위를 과학적으로 판명할 수 있는 기술을 개발하고자 실시하였다. 이러한 연구 목표 아래 먼저 사태(Beef shank), 등심(Longissimus dorsi), 양지(Deep pectoral), 홍두깨(Semitendinosus) 부위의 근육조직에서 MSC (myogenic satellite cell, 근육줄기세포)를 순수 분리하고 이를 MFC (myotube-formed cell; 근관이 형성된 세포)로 분화시키거나 ALC (adipocyte-like cell; 지방세포와 유사한 세포)로 이형분화 시킨 후 3가지의 세포로 부터 각각의 RNA를 추출하였다. 이렇게 추출한 RNA는 24,000개의 bovine oligo-nucelotide (70 mer)가 집적된 microarray를 이용해 4개의 조직 중 1개의 조직에서만 MSC의 분화(MFC) 또는 이형분화 과정에서 mRNA의 발현이 증감을 보이는 유전자 135개를 먼저 발굴하였다. 135개의 유전자에 대해 microarray 분석에 사용한 동일한 RNA를 이용하여 real-time PCR 기술로 검증한 결과 총 29개의 유전자가 microarray 분석 결과와 유사함을 보였다. 29개의 유전자를 다시 4개 부위의 생체 조직에서 추출한 RNA를 이용해 real-time PCR 방법으로 분석한 결과 TS (thymi- dlyate synthase), TE (tropoelastin), RAD52(similar RAD52 motifcontaining protein 1), unknown gene), MLC2 (myosin light 2, regulatory cardiac, slow), TXNIP (thioredoxin-interating protein) 6개의 유전자만이 다른 부위에 비해 사태 부위에서 현저한 발현의 차이를 나타냈다. 결론적으로 본 연구를 통해 소 부위별 근육을 구분할 수 있는 과학적 기술의 토대를 확립하였다.

Keywords

References

  1. Alexander, F. and Moshe, S. 1993. The expression of the regulatory myosin light chain 2 gene during mouse embryogenesis. Development 118:919-929.
  2. Anthony, S., Justine, D., Frederic, T., Gareth A. P., Annabelle Z. C., Miguel A. A. and Guillaume G. 2010. Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing. Mech Ageing Dev. 131:9-20. https://doi.org/10.1016/j.mad.2009.11.001
  3. Bankmann, M., Prakash, L. and Prakash, S. 1992. Yeast RAD14 and human xeroderma pigmentosum group a DNA-repair genes encode homologous proteins. Nature 355:555-558. https://doi.org/10.1038/355555a0
  4. Cho, S. H., Kim, J. H., Seong, P. N., Lee, Y. J., In, T. S., Kim, S. C. and Kim, Y. K. 2007. Cholesterol, free amino acid, nucleotide related compounds, and fatty acid composition of Korean Hanwoo bull beef. Korean J. Food Sci Ani. Resour. 15:440-449.
  5. Derenzini, M., Montanaro, L., Trere, D., Chilla, A., Tazzari, P L., Dall’Olio F. and Ofner, D. 2002. Thymidylate synthase protein expression and activity are related to the cell proliferation rate in human cancer cell lines. Mol Path. 55:310-314. https://doi.org/10.1136/mp.55.5.310
  6. Eggert, J. M., Depreux, FFS., Schinckel, A. P., Grant, A. L. and Gerrard, D. E. 2002. Myosin heavy chain isoforms account for variation in pork quality. Meat Sci. 61:117-126. https://doi.org/10.1016/S0309-1740(01)00154-1
  7. Emerson, C. P. and Bernstein, S. I. 1987. Molecular genetics of myosin. Annu Rev Biochem. 56:695-726. https://doi.org/10.1146/annurev.bi.56.070187.003403
  8. Garbe, J. R., Elsik, C. G., Antoniou, E., Reecy, J. M., Clark, K. J., Venkatraman, V., Kim, J. W., Schnabel, R. D., Dickens, M. C., Wolfinger, R. D., Fahrenkrug, S. C. and Taylor, JF. 2010. Development and application of bovine and porcine oligonucleotide arrays with protein based annotation. Anim Genet (manuscript submitted).
  9. Goetsch, S. C., Hawke, T. J., Gallardo, T. D., Richardson, J. A. and Garry, D. J. 2003. Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261-71. https://doi.org/10.1152/physiolgenomics.00056.2003
  10. Hawke, T. J. and Garry, D. J. 2001. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 91:534-551. https://doi.org/10.1152/jappl.2001.91.2.534
  11. Kim, N. K., Cho, S., Lee, S. H., Park, H. R., Lee, C. S., Cho, Y. M., Choy, Y. H., Yoon, D., Im, S. K. and Park, E. W. 2008. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Science 80:1068-1073. https://doi.org/10.1016/j.meatsci.2008.04.027
  12. Lay, S. L., Lefrere, C., Trautwein, I. Dugail and Krief, S. 2002. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. J. Biol. Chem. 277:35625-35634. https://doi.org/10.1074/jbc.M203913200
  13. Lyons, G. E., Ontell, M., Cox, R., Sassoon, D. and Buckingham, M. 1990. The expression of myosin genes in developing skeletal muscle in the mouse embryo. The Journal of Cell Biology 111:1465-1476. https://doi.org/10.1083/jcb.111.4.1465
  14. Maltin, C., Balcerzak, D., Tilley, R. and Delday, M. 2003. Determinants of meat quality: tenderness. Proceedings of the Nutrition Society 62:337-347. https://doi.org/10.1079/PNS2003248
  15. Oe, M., Ohnishi, Kameyama, M., Nakajima, I., Muroya, S. and. Chikuni, K. 2007. Muscle type specific expression of tropomyosin isoforms in bovine skeletal muscles Meat Science 75:558-563. https://doi.org/10.1016/j.meatsci.2006.09.003
  16. Park, E., Guzder S. N., Koken, M. H., Jaspers, D. I., Weeda, G., Hoeijmakers, J. H., Prakash, S. and Prakash, L. 1992. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl. Acad. Sci. 89:11416-11420. https://doi.org/10.1073/pnas.89.23.11416
  17. Parikh, H., Carlsson, E., Chutkow, W. A., Johansson, L. E., Storgaard, H., Poulsen. P., Saxena. R., Ladd, C., Schulze, P. C., Mazzini, M. J., Jensen, C. B., Krook, A., Bjornholm, M., Tornqvist, H., Zierath, J. R., Ridderstrale, M., Altshuler, D., Lee. R. T., Vaag. A., Groop, L. C. and Mootha, V. K. 2007. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 4:e158. https://doi.org/10.1371/journal.pmed.0040158
  18. Parth, P., Luke, J., William, A. C., Jun, Y. and Richard, T. 2006. The interaction of thioredoxin with txnip: evidence for formation of a mixed disulfide by disulfide exchange. J Biol Chem. 281:21884-21891. https://doi.org/10.1074/jbc.M600427200
  19. Rachel, S., Zadok, B., Ora, F., Uri, N. and David, Y. 2006. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem cells 24: 1769-1778. https://doi.org/10.1634/stemcells.2005-0547
  20. Schiaffino, S. and Reggiani, C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiological Reviews 76:371-423. https://doi.org/10.1152/physrev.1996.76.2.371
  21. Singh, N. K., Chae, H. S., Hwang, I. H., Yoo, Y. M., Ahn, C. N., Lee, S. H., Lee, H. J., Park, H. J. and Chung, H. Y. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim Sci. 85:1126-1135. https://doi.org/10.2527/jas.2006-524
  22. Xu, D. Q., Liu, M., Xiong, Y. Z., Deng, C. Y., Jiang, S. W., Li, J. L., Zuo B., Lei, M. G., Li, F. E. and Zheng, R. 2007. Identification of polymorphisms and association analysis with meat quality traits in the porcine KIAA1717 and HUMMLC2B. Livestock Science 106:96-101. https://doi.org/10.1016/j.livsci.2006.07.005

Cited by

  1. Expression of Transthyretin during bovine myogenic satellite cell differentiation vol.50, pp.8, 2014, https://doi.org/10.1007/s11626-014-9757-y