DOI QR코드

DOI QR Code

Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

  • Jeong, Kyung-Hwan (Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology) ;
  • Seo, Jong-Cheol (Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology) ;
  • Yoon, Hye-Joo (Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology) ;
  • Shin, Seung-Koo (Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2010.05.16
  • Accepted : 2010.06.26
  • Published : 2010.08.20

Abstract

Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while $\alpha$-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1-3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive of peptides by homogeneously depositing matrix and sample under atmospheric pressure.

Keywords

References

  1. Moyer, S. C.; Cotter, R. J. Anal. Chem. 2002, 74, 468 A-476 A. https://doi.org/10.1021/ac010419n
  2. Cohen, S. L.; Chait, B. T. Anal. Chem. 1996, 68, 31-37. https://doi.org/10.1021/ac9507956
  3. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299-2301. https://doi.org/10.1021/ac00171a028
  4. Dai, Y.; Whittal, R. M.; Li, L. Anal. Chem. 1996, 68, 2494-2500. https://doi.org/10.1021/ac960238z
  5. Garden, R. W.; Sweedler, J. V. Anal. Chem. 2000, 72, 30-36. https://doi.org/10.1021/ac9908997
  6. Vorm, O.; Roepstorff, P.; Mann, M. Anal. Chem. 1994, 66, 3281- 3287. https://doi.org/10.1021/ac00091a044
  7. Vorm, O.; Mann, M. J. Am. Soc. Mass Spectrom. 1994, 5, 955-958. https://doi.org/10.1016/1044-0305(94)80013-8
  8. Nicola, A. J.; Gusev, A. I.; Proctor, A.; Jackson, E. K.; Hercules, D. M. Rapid Commun. Mass Spectrom. 1995, 9, 1164-1171. https://doi.org/10.1002/rcm.1290091216
  9. Dai, Y.; Whittal, R. M.; Li, L. Anal. Chem. 1999, 71, 1087-1091. https://doi.org/10.1021/ac980684h
  10. Hankin, J. A.; Barkley, R. M.; Murphy, R. C. J. Am. Soc. Mass Spectrom. 2007, 18, 1646-1652. https://doi.org/10.1016/j.jasms.2007.06.010
  11. McNeal, C. J.; Macfarlane, R. D.; Thurston, E. L. Anal. Chem. 1979, 51, 2036-2039. https://doi.org/10.1021/ac50048a032
  12. Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. Anal. Chem. 1985, 57, 675-679. https://doi.org/10.1021/ac00280a023
  13. Roepstorff, P.; Nielsen, P. F.; Sundqvist, B. U. R.; Hakansson, P.; Jonsson, G. Int. J. Mass Spectrom. Ion Processes 1987, 78, 229-236. https://doi.org/10.1016/0168-1176(87)87051-9
  14. Axelsson, J.; Hoberg, A.-M.; Waterson, C.; Myatt, P.; Shield, G. L.; Varney, J.; Haddleton, D. M.; Derrick, P. J. Rapid Commun. Mass Spectrom. 1997, 11, 209-213. https://doi.org/10.1002/(SICI)1097-0231(19970131)11:2<209::AID-RCM734>3.0.CO;2-E
  15. McLeod, G. S; Axelsson, J.; Self, R.; Derrick, P. J. Rapid Commun. Mass Spectrom. 1997, 11, 214-218. https://doi.org/10.1002/(SICI)1097-0231(19970131)11:2<214::AID-RCM739>3.0.CO;2-D
  16. Hensel, R. R.; King, R. C.; Owens, K. G. Rapid Commun. Mass Spectrom. 1997, 11, 1785-1793. https://doi.org/10.1002/(SICI)1097-0231(19971030)11:16<1785::AID-RCM78>3.0.CO;2-Q
  17. Hanton, S. D.; Clark, P. A. C.; Owens, K. G. J. Am. Soc. Mass Spectrom. 1999, 10, 104-111. https://doi.org/10.1016/S1044-0305(98)00135-4
  18. Go, E. P.; Shen, S.; Harris, K.; Siuzdak, G. Anal. Chem. 2003, 75, 5475-5479. https://doi.org/10.1021/ac034376h
  19. Hanton, S. D.; Hyder, I. Z.; Stets, J. R.; Owens, K. G.; Blair, W. R.; Guttman, C. M.; Giuseppetti, A. A. J. Am. Soc. Mass Spectrom. 2004, 15, 168-179. https://doi.org/10.1016/j.jasms.2003.09.012
  20. Wei, H.; Nolkrantz, K.; Powell, D. H.; Woods, J. H.; Ko, M.-C.; Kennedy, R. T. Rapid Commun. Mass Spectrom. 2004, 18, 1193- 1200. https://doi.org/10.1002/rcm.1458
  21. Wang, Y.-X.; Zhou, Y.; Balgley, B. M.; Cooper, J. W.; Lee, C. S.; DeVoe, D. L. Electrophoresis 2005, 26, 3631-3640. https://doi.org/10.1002/elps.200500127
  22. Thompson, J. W.; Eschelbach, J. W.; Wilburn, R. T.; Jorgenson, J. W. J. Am. Soc. Mass Spectrom. 2005, 16, 312-323. https://doi.org/10.1016/j.jasms.2004.11.012
  23. Shaffer, S. A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Anal. Chem. 1998, 70, 4111-4119. https://doi.org/10.1021/ac9802170
  24. Morozov, V. N.; Morozova, T. Y. Anal. Chem. 1999, 71, 3110- 3117. https://doi.org/10.1021/ac981412h
  25. Schneider, B. B.; Douglas, D. J.; Chen, D. D. Y. Rapid Commun. Mass Spectrom. 2001, 15, 2168-2175. https://doi.org/10.1002/rcm.481
  26. Zhou, L.; Yue, B.; Dearden, D. V.; Lee, E. D.; Rockwood, A. L.; Lee, M. L. Anal. Chem. 2003, 75, 5978-5983. https://doi.org/10.1021/ac020786e
  27. Saf, R.; Goriup, M.; Steindl, T.; Hamedinger, T. E.; Sandholzer, D.; Hayn, G. Nat. Mater. 2004, 3, 323-329. https://doi.org/10.1038/nmat1117
  28. Beavis, R. C.; Chaudhary, T.; Chait, B. T. Organic Mass Spectrom.1992, 27, 156-158. https://doi.org/10.1002/oms.1210270217
  29. Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion. Proc. 1991, 111, 89-102. https://doi.org/10.1016/0168-1176(91)85050-V
  30. Guan, Z.; Yates, N. A.; Bakhtiar, R. J. Am. Soc. Mass Spectrom. 2003, 14, 605-613. https://doi.org/10.1016/S1044-0305(03)00201-0
  31. Kotiaho, T.; Eberlin, M. N.; Vainiotalo, P.; Kostiainen, R. J. Am. Soc. Mass Spectrom. 2000, 11, 526-535. https://doi.org/10.1016/S1044-0305(00)00116-1
  32. de la Mora, J. F.; Van Berkel, G. J.; Enke, C. G.; Cole, R. B.; Martinez- Sanchez, M.; Fenn, J. B. J. Mass Spectrom. 2000, 35, 939- 952. https://doi.org/10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V
  33. Xu, G.; Chance, M. R. Chem. Rev. 2007, 107, 3514-3543. https://doi.org/10.1021/cr0682047
  34. Dahl, D. A.; McJunkin, T. R.; Scott, J. R. Int. J. Mass Spectrom. 2007, 266, 156-165. https://doi.org/10.1016/j.ijms.2007.07.008
  35. Bogan, M. J.; Agnes, G. R. Rapid Commun. Mass Spectrom. 2004, 18, 2673-2681. https://doi.org/10.1002/rcm.1670
  36. Mank, M.; Stahl, B.; Boehm, G. Anal. Chem. 2004, 76, 2938-2950. https://doi.org/10.1021/ac030354j

Cited by

  1. Advancing Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometric Imaging for Capillary Electrophoresis Analysis of Peptides vol.83, pp.9, 2011, https://doi.org/10.1021/ac200708f
  2. Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives vol.12, pp.4, 2021, https://doi.org/10.5478/msl.2021.12.4.126