DOI QR코드

DOI QR Code

Photophysical Properties of Chlorotriethylphosphinegold(I)

  • Kang, Jun-Gill (Department of Chemistry, Chungnam National University) ;
  • Jeong, Yong-Kwang (Department of Chemistry, Chungnam National University) ;
  • Oh, Sung-Il (Department of Chemistry, Chungnam National University) ;
  • Kim, Hyun-Jun (Department of Chemistry, Chungnam National University) ;
  • Park, Chang-Moon (Department of Chemistry, Chungnam National University) ;
  • Tiekink, Edward R.R. (Department of Chemistry, University of Malaya)
  • Received : 2010.03.08
  • Accepted : 2010.06.04
  • Published : 2010.08.20

Abstract

Spectroscopic and quantum mechanical studies of the Et3PAuCl complex were performed to characterize the effect of aurophilicity on the optical properties. When excited with UV light at low temperature, the crystalline complex produced a deep luminescence in both the blue (high-energy) and red (low-energy) regions of the spectrum. The intensity of the low-energy luminescence was markedly reduced in the powdered state and quenched in the solution state. Time-dependent density functional theory (TD-DFT) calculations on electronic structures of both the ground and excited states of aggregates $[Et_3PAuCl]_n$ (n = 1 - 3) indicated that the low-energy luminescence was attributable to Au-centered transitions, which are significantly affected by aurophilic interactions. By contrast, the high-energy luminescence appeared to be independent of the state of the complex and was strongly associated with the charge transfer from Cl to Au.

Keywords

References

  1. Forward, J. M.; Fackler, J. P., Jr.; Assefa, Z. Optoelectronic Properties of Inorganic Compounds; Roundhill, D. M., Fackler, J. P., Jr., Eds.; Plenum Press; New York, 1999; Ch. 6.
  2. Tiekink, E. R. T.; Kang, J.-G. Coord. Chem. Rev. 2009, 253, 1627. https://doi.org/10.1016/j.ccr.2009.01.017
  3. Yam, V. W.-W.; Cheng, E. C.-C. Top. Curr. Chem. 2007, 281,
  4. Yam, V. W.-W.; Cheng, E. C.-C. Chem. Soc. Rev. 2008, 37, 1806. https://doi.org/10.1039/b708615f
  5. Larsen, L. J.; McCauley, E. M.; Weissbart, B.; Tinti, D. S. J. Phys. Chem. 1995, 99, 7218. https://doi.org/10.1021/j100019a002
  6. Bardaji, M.; Laguna, A.; Vicente, J.; Jones, P. G. Inorg. Chem. 2001, 40, 2675. https://doi.org/10.1021/ic000802v
  7. Osawa, M.; Hoshino, M.; Akita, M.; Wada, T. Inorg. Chem. 2005, 44, 1157. https://doi.org/10.1021/ic048538j
  8. King, C.; Wang, J.-C.; Khan, M. N. I.; Fackler, J. P., Jr. Inorg. Chem. 1989, 28, 2145. https://doi.org/10.1021/ic00310a026
  9. King, K.; Khan, M. N. I.; Staples, R. J.; Fackler, J. P., Jr. Inorg. Chem. 1992, 31, 3236. https://doi.org/10.1021/ic00041a013
  10. Pawlowski, V.; Kunkely, H.; Vogler, A. Inorg. Chim. Acta 2004, 357, 1309. https://doi.org/10.1016/j.ica.2003.09.020
  11. Kang, J.-G.; Park, C.; Tiekink, E. R. T. Bull. Korean Chem. Soc. 2006, 27, 299. https://doi.org/10.5012/bkcs.2006.27.2.299
  12. Hanna, S. D.; Khan, S. I.; Zink, J. I. Inorg. Chem. 1996, 35, 5813. https://doi.org/10.1021/ic951313b
  13. Bardaji, M.; Laguna, A.; Vicente, J. Inorg. Chem. 2001, 40, 2675. https://doi.org/10.1021/ic000802v
  14. Weissbart, B.; Toronto, D. V.; Balch, A. L.; Tinti, D. S. Inorg. Chem. 1996, 35, 2490. https://doi.org/10.1021/ic951100m
  15. Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412. https://doi.org/10.1002/anie.200300624
  16. Osawa, M.; Kawata, I.; Igawa, S.; Tsuboyama, A.; Hashizume, D.; Hoshino, M. Eur. J. Inorg. Chem. 2009, 3708.
  17. Crespo, O.; Concepción Gimeno, M.; Laguna, A.; Kulcsar, M.; Silvestru, C. Inorg. Chem. 2009, 48, 4134. https://doi.org/10.1021/ic802396g
  18. Mullice, L. A.; Thorp-Greenwood, F. L.; Laye, R. H.; Coogan, M. P.; Kariuki, B. M.; Pope, S. J. A. Dalton Trans. 2009, 6836.
  19. Balch, A. L. Angew. Chem. Int. Ed. 2009, 48, 2641. https://doi.org/10.1002/anie.200805602
  20. Takemura, Y.; Takenaka, H.; Nakajima, T.; Tanase, T. Angew. Chem. Int. Ed. 2009, 47, 2157.
  21. Elbjeirami, O.; Gonser, M. W. A.; Stewart, B. N.; Bruce, A. E.; Bruce, M. R. M.; Cundari, T. R.; Omary, M. A. Dalton Trans. 2009, 1522.
  22. Gao, L.; Peay, M. A.; Partyka, D. V.; Updegraff, J. B.; Teets, T. S.; Esswein, A. J.; Zeller, M.; Hunter, A. D.; Gray, T. G. Organometallics 2009, 28, 5669. https://doi.org/10.1021/om9005214
  23. Au, V. K.-M.; Wong, K. M.-C.; Zhu, N.; Yam, V. W.-W. J. Am. Chem. Soc. 2009, 131, 9076. https://doi.org/10.1021/ja9027692
  24. Crespo, O.; Concepcóon Gimeno, M.; Laguna, A.; Ospino, I.; Aullon, G.; Oliva, J. M. Dalton Trans. 2009, 3807.
  25. Abdou, H. E.; Mohamed, A. A.; Fackler, J. P.; Burini, A.; Galassi, R.; Lopez-de-Luzuriaga, J. M.; Olmos, M. E. Coord. Chem. Rev. 2009, 253, 1661. https://doi.org/10.1016/j.ccr.2009.02.010
  26. Li, C.-K.; Lu, X.-X.; Wong, K. M.-C.; Chan, C.-L.; Zhu, N.; Yam, V. W.-W. Inorg. Chem. 2004, 43, 7421. https://doi.org/10.1021/ic049094u
  27. He, X.; Lam, W. H.; Zhu, N.; Yam, V. W.-W. Chem. - Eur. J. 2009, 15, 8842. https://doi.org/10.1002/chem.200900422
  28. He, X.; Cheng, E. C.-C.; Zhu, N.; Yam, V. W.-W. Chem. Commun. 2009, 4016.
  29. Tiekink, E. R. T. Acta Cryst. 1989, C45, 1233.
  30. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; shida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
  31. Cho, K.-H.; Joo, S.-W. Bull. Korean Chem. Soc. 2008, 29, 69. https://doi.org/10.5012/bkcs.2008.29.1.069
  32. Kim, K. H.; Kim, J. C.; Han, Y.-K Bull. Korean Chem. Soc. 2009, 30, 794. https://doi.org/10.5012/bkcs.2009.30.4.794
  33. Kortüm, G. Reflectance Spectroscopy; Springer-Verlag; New York, 1969.
  34. Pyykkö, P.; Li, J.; Runeberg, N. Chem. Phys. Lett. 1994, 218, 133. https://doi.org/10.1016/0009-2614(93)E1447-O

Cited by

  1. Aurophilic interactions as a subject of current research: an up-date vol.41, pp.1, 2012, https://doi.org/10.1039/C1CS15182G
  2. The Nature of Metal-Metal Interactions in Dimeric Hydrides and Halides of Group 11 Elements in the Light of High Level Relativistic Calculations vol.23, pp.14, 2017, https://doi.org/10.1002/chem.201605519
  3. Gold(I) Complexes Containing Phosphanyl- and Arsanylborane Ligands vol.24, pp.40, 2018, https://doi.org/10.1002/chem.201802682
  4. In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(I) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain ti vol.8, pp.1, 2010, https://doi.org/10.1039/c9tb01800j
  5. Excimer‐ und Exciplex‐Bildung in durch aurophile Wechselwirkungen präkonditionierten Gold(I)‐ Komplexen vol.132, pp.35, 2010, https://doi.org/10.1002/ange.201916255
  6. Excimer and Exciplex Formation in Gold(I) Complexes Preconditioned by Aurophilic Interactions vol.59, pp.35, 2020, https://doi.org/10.1002/anie.201916255