# Monoamine Oxidase Inhibitory Flavonoids from the Root Bark of *Cudrania tricuspidata*

Xiang Hua Han<sup>1,#</sup>, Ji Hye Hwang<sup>1,#</sup>, Seong Su Hong<sup>1</sup>, Sanggil Choe<sup>1</sup>, Chul Lee<sup>1</sup>, Moon Soon Lee<sup>2</sup>, Dongho Lee<sup>3</sup>, Myung Koo Lee<sup>1</sup>, Mi Kyeong Lee<sup>1</sup>, and Bang Yeon Hwang<sup>1,\*</sup>

<sup>1</sup>College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea

<sup>2</sup>College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju 361-763, Korea <sup>3</sup>School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea

Abstract – Two new benzylated flavonoids, 5,7,4'-trihydroxy-6*p*-hydroxybenzylflavanone (1) and 5,7,4'-trihydroxy-6,8-di-*p*-hydroxybenzylflavanone (2) together with six known flavonoids, kaempferol (3), artocarpesin (4), cycloartocarpesin (5), cudraflavone D (6), gericudranin E (7), and leachianone G (8) have been isolated from the root bark of *Cudrania tricuspidata*. The structures of 1 and 2 were characterized based on spectroscopic data including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects of monoamine oxidase (MAO). Among them, kaempferol (3), artocarpesin (4), and cudraflavone D (6) showed moderate inhibitory effects with IC<sub>50</sub> values of 82.3, 30.8, and 71.8  $\mu$ M, respectively.

Keywords - Cudrania tricuspidata, Moraceae, Benzylated flavonoid, Monoamine oxidase inhibitor

## Introduction

*Cudrania tricuspidata* (Carr.) Bur. (Moraceae) has been traditionally used as a folk medicine to treat jaundice, hepatitis, neuritis, dysmenorrheal, and rheumatism (Jung and Shin, 1990). Previous studies on the stems or root barks of *C. tricuspidata* have revealed various types of isoprenylated xanthones and flavonoids with numerous biological activities such as cytotoxic, hepatoprotective, anti-lipid peroxidative, anti-atherosclerotic, and anti-inflammatory activities (Fujimoto *et al.*, 1984a, 1984b; Hano *et al.*, 1991; Lee *et al.*, 1996, 2005, 2009; Zou *et al.*, 2004, 2005; Tian *et al.*, 2005; Park *et al.*, 2006; Seo *et al.*, 2007).

Monoamine oxidase (MAO, EC 1.4.3.4, amine-oxygen oxidoreductase) is a flavin-containing and membranebound enzyme responsible for the oxidative deamination of a number of monoamine neurotransmitters such as norepenephrine, dopamine and 5-hydroxytryptamine in the brain and the peripheral tissues (Shih *et al.*, 1999; Edmondson *et al.*, 2009). MAO inhibitors represent a useful tool for the treatment of several psychiatric and neurological disorders. MAO A inhibitors are used in anxiety and depression, while MAO B inhibitors have been found to be potentially beneficial in the treatment of Parkinson's disease and Alzheimer's disease (Yamada *et al.*, 2004; Youdim *et al.*, 2006). Recently, we have described isolation of prenylated xanthones and isoflavonoids and their MAO inhibitory activities from *C. tricuspidata* (Han *et al.*, 2005; Hwang *et al.*, 2007).

In this study, we identified two new benzylated flavonoids 1 and 2, and six known flavonoids (3 - 8) from the MeOH extract of the root bark of *C. tricuspidata*. All the isolates were examined for their inhibitory effects on the mouse brain MAO.

# **Materials and Methods**

General experimental procedures – UV and IR spectra were obtained on a JASCO UV-550 and JASCO Report-100 spectrometer, respectively. CD spectra were recorded on a JASCO J-715 spectrometer. NMR spectra were acquired with a Bruker AMX 500 instrument at room temperature. ESI-MS and HRFAB-MS were measured on a Finnigan LCQ Fleet and a JEOL JMS-HX/HX110A Tandem Mass spectrometer, respectively. Silica gel (70 -230 mesh, Merck, Germany), Lichroprep RP-18 (40 - 63  $\mu$ M, Merck, Germany), and Sephadex LH-20 (25 - 100  $\mu$ M, Amersham Biosciences, Sweden) were used for open column chromatography. Preparative HPLC was carried out on a Waters system (two 515 pumps and 2996

<sup>&</sup>lt;sup>#</sup> These authors contributed equally to this work.

<sup>\*</sup>Author for correspondence

Tel: +82-43-261-2814; E-mail: byhwang@chungbuk.ac.kr

photodiode array detector) and a YMC J'sphere ODS-H80 column (4  $\mu$ m, 150 × 20 mm), using the mixed solvent system of acetonitrile-water at a flow rate of 6.0 mL/min. Thin layer chromatography (TLC) was performed on a pre-coated silica gel 60 F<sub>254</sub> (0.25 mm, Merck, Germany). All other chemicals and reagents were analytical grade. Kynuramine, 4-hydroxyquinoline, and iproniazid were purchased from Sigma Chemical Co. (St. Louis, MO, USA).

**Plant material** – The root barks of *C. tricuspidata* were collected from the herb garden at Chungbuk National University, Cheongju, Korea, in October 2005 and identified by Emeritus Professor Kyong Soon Lee. A voucher specimen (CBNU 0502) has been deposited at the Herbarium of College of Pharmacy, Chungbuk National University, Korea.

**Extraction and isolation** – The air-dried root bark of *Cudrania tricuspidata* (1.5 kg) was extracted three times with MeOH ( $10 L \times 3$ ) at room temperature. The combined extracts were concentrated in vacuo to yield a

## Natural Product Sciences

dried MeOH extract (150 g). This extract was suspended in 90% MeOH and then partitioned with  $CH_2Cl_2$  (2 L × 3) and EtOAc ( $2L \times 3$ ). The CH<sub>2</sub>Cl<sub>2</sub> extract (11 g), with 50% inhibitory activity at a concentration of 10 µg/mL in the MAO inhibition assay, was chromatographed on a silica gel column, eluting with a CH2Cl2-MeOH gradient system (100 : 0 to 1 : 1, v/v) to give four fractions (CT-A -CT-D). Fraction CT-D (4.1 g) was further chromatographed over silica gel column, eluting with a n-hexaneacetone gradient system (5 : 1 to 1 : 1, v/v) to afford four combined fractions (CT-D1-CT-D4). Fraction CT-D4 was further chromatogrphed over a Sephadex LH-20, eluting with MeOH-H<sub>2</sub>O (60 : 40 to 100 : 0, v/v) to yield six sub-fractions (CT-D41 - CT-D46). Fraction CT-D44 was subjected to semi-preparative HPLC (Waters system, YMC J'sphere ODS-H80 column, 4  $\mu$ m, 150  $\times$  20 mm, i.d., MeCN:  $H_2O = 45:55$ , flow rate 6.5 mL/min) to yield compounds 1 (3.1 mg), 2 (6.6 mg), 3 (4.1 mg), and 4 (3.8 mg). Fraction CT-D43 was further purified by semi-preparative HPLC using MeCN: H<sub>2</sub>O (40:60) at a

Table 1. <sup>1</sup>H (500 MHz) and <sup>13</sup>C NMR (125 MHz) data of compounds 1 and 2 (Acetone-*d*<sub>6</sub>)

| position - | 1                |                                             | 2              |                                             |
|------------|------------------|---------------------------------------------|----------------|---------------------------------------------|
|            | $\delta_{\rm C}$ | $\delta_{\rm H} (J \text{ in Hz})$          | δ <sub>C</sub> | $\delta_{\rm H} (J \text{ in Hz})$          |
| 2          | 79.8             | 5.43 dd (3.0, 13.0)                         | 79.5           | 5.46 dd (3.0, 12.8)                         |
| 3          | 43.5             | 3.17 dd (13.0, 17.1)<br>2.72 dd (3.0, 17.1) | 43.3           | 3.16 dd (12.8, 17.1)<br>2.80 dd (3.0, 17.1) |
| 4          | 197.3            | _                                           | 197.8          | _                                           |
| 4a         | 103.0            | _                                           | 103.1          | _                                           |
| 5          | 162.1            | 12.53 s                                     | 160.5          | 12.56 s                                     |
| 6          | 109.5            | _                                           | 108.8          | _                                           |
| 7          | 164.7            | _                                           | 162.3          | _                                           |
| 8          | 95.2             | 6.05 s                                      | 108.1          | _                                           |
| 8a         | 162.3            | _                                           | 159.3          | _                                           |
| 1'         | 128.9            | _                                           | 128.5          | _                                           |
| 2', 6'     | 130.8            | 7.38 d (8.5)                                | 130.5          | 7.35 d (8.5)                                |
| 3', 5'     | 116.0            | 6.89 d (8.5)                                | 115.9          | 6.88 d (8.5)                                |
| 4'         | 158.6            | _                                           | 158.3          | _                                           |
| 1"         | 27.1             | 3.79 s                                      | 27.1           | 3.90 s                                      |
| 2"         | 132.9            | _                                           | 132.0          | _                                           |
| 3", 7"     | 130.2            | 7.14 d (8.5)                                | 129.8          | 7.08 d (8.4)                                |
| 4", 6"     | 115.4            | 6.68 d (8.5)                                | 115.4          | 6.68 d (8.4)                                |
| 5"         | 156.0            | _                                           | 156.0          | _                                           |
| 1'''       | -                | _                                           | 27.7           | 3.86 d (14.4)<br>3.89 d (14.4)              |
| 2'''       | _                | _                                           | 132.1          | _                                           |
| 3''', 7''' | _                | _                                           | 130.7          | 7.02 d (8.5)                                |
| 4''', 6''' | _                | _                                           | 115.4          | 6.66 d (8.5)                                |
| 5'''       | _                | _                                           | 156.0          | _                                           |

flow rate of 6.5 mL/min to yield compounds 7 (2.6 mg) and **8** (3.2 mg). Fraction CT-D3 was further chromatographed over a RP-18 column, eluting with MeCN :  $H_2O$  (50 : 50 to 100 : 0) to yield compounds **5** (63.4 mg) and **6** (6.1 mg).

**5,7,4'-Trihydroxy-6-***p***-hydroxybenzylflavanone** (1) – Yellow amorphous powder; UV (MeOH):  $\lambda_{max}$  nm (log  $\epsilon$ ): 295 (4.21), 347 (3.89); IR (KBr)  $\nu_{max}$  3439, 1635 cm<sup>-1</sup>; CD (MeOH)  $\lambda_{max}$  nm ( $\Delta\epsilon$ ) 289 (–14.1), 333 (+3.3); ESI-MS *m/z*: 378 [M]<sup>+</sup>; HRFAB-MS: *m/z* 379.1176 [M + H]<sup>+</sup>, calcd for C<sub>22</sub>H<sub>19</sub>O<sub>6</sub>, 379.1182; <sup>1</sup>H NMR (Acetone-*d*<sub>6</sub>, 500 MHz) and <sup>13</sup>C NMR (Acetone-*d*<sub>6</sub>, 125 MHz), see Table 1.

**5,7,4'-Trihydroxy-6,8-di-***p***-hydroxybenzylflavanone** (2) – Yellow amorphous powder; UV (MeOH):  $\lambda_{max}$  nm (log ε): 296 (4.21), 356 (3.89); IR (KBr)  $\nu_{max}$  3502, 1655 cm<sup>-1</sup>; CD (MeOH)  $\lambda_{max}$  nm (Δε) 291 (–3.7), 353 (+ 0.2); HRFAB-MS: *m/z* 507.1422 [M + Na]<sup>+</sup>, calcd for C<sub>29</sub>H<sub>24</sub>O<sub>7</sub>Na, 507.1420; <sup>1</sup>H NMR (Acetone-*d*<sub>6</sub>, 500 MHz) and <sup>13</sup>C NMR (Acetone-*d*<sub>6</sub>, 125 MHz), see Table 1.

**MAO preparation and assay for MAO inhibitory activity** – A crude mitochondrial fraction from mouse brain was prepared as a source of MAO activity following the procedure described previously (Naoi and Nagatsu, 1987; Ro *et al.*, 2001). MAO activity was measured fluorometrically using kynuramine as a substrate according to the method of Kraml with a slight modification (Kraml, 1965; Ro *et al.*, 2001). The fluorescence intensity of 4hydroxyquinoline, which was formed from kynuramine by MAO, was measured at an emission wavelength of 380 nm and an excitation wavelength of 315 nm using a Perkin Elmer LS 50B fluorescence spectrometer.

# **Results and Discussion**

A methanolic extract of the roots of *C. tricuspidata* was partitioned with  $CH_2Cl_2$ , EtOAc, and water, successively. Repeated column chromatographic separation of the  $CH_2Cl_2$  extract on a combination of silica gel, RP-18, Sephadex LH-20, and semi-preparative HPLC resulted in the isolation of two new benzylated flavonoids (**1** - **2**), together with six known flavonoids (**3** - **8**), which were identified as kaempferol (**3**) (Kim *et al.*, 2002), artocarpesin (**4**) (Young *et al.*, 1989), cycloartocarpesin (**5**) (Fujimoto and Nomura, 1985), cudraflavone D (**6**) (Hano *et al.*, 1990), gericudranin E (**7**) (Lee *et al.*, 1995), and leachianone G (**8**) (Iinuma *et al.*, 1993).

Compound 1 was obtained as a yellow amorphous powder, and the molecular formula was determined as  $C_{22}H_{18}O_6$  by ESI-MS at m/z 378 [M]<sup>+</sup> and HRFAB-MS at m/z 379.1176 [M + H]<sup>+</sup> (calcd m/z 379.1182). The IR

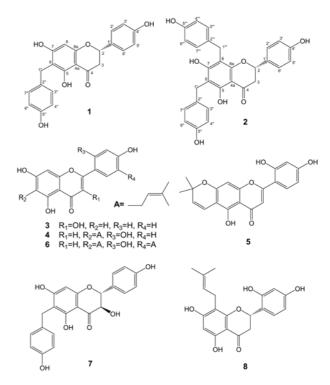



Fig. 1. Structures of compounds 1 - 8.

absorption bands at 3439 and 1635 cm<sup>-1</sup> suggested the presence of free hydroxyl and conjugated carbonyl functionalities. The UV spectrum of 1 resembled the spectra of flavanone derivatives (Fujimoto and Nomura, 1985). The <sup>1</sup>H NMR spectrum of **1** showed resonances for an ABX system at  $\delta_{\rm H}$  2.72 (1H, dd, J = 3.0 and 17.1 Hz, H-3b), 3.17 (1H, dd, J = 13.0 and 17.1 Hz, H-3a), and 5.43 (1H, dd, J = 3.0 and 13.0 Hz, H-2), which is diagnostic for H-2 and H-3 of a flavanone skeleton. It also exhibited signals for two sets of ortho coupled protons at δ 7.38 (2H, d, J = 8.5 Hz) and δ 6.89 (2H, d, J = 8.5 Hz) characteristic of a 1,4-substituted benzene ring. A sharp singlet at  $\delta_{\rm H}$  6.05 indicated that either C-6 or C-8 ring A was substituted. The remaining proton signals at  $\delta$  7.14  $(2H, d, J = 8.5 \text{ Hz}), \delta 6.68 (2H, d, J = 8.5 \text{ Hz}), \text{ and } \delta 3.79$ (2H, s) were characteristic of the *p*-substituted benzyl group (Lee et al., 1995, 1996). The skeleton was also supported by the <sup>13</sup>C NMR, DEPT, and HMQC spectrum. The  ${}^{13}C$  NMR spectrum of 1 revealed the presence of 22 carbons including characteristic signals of the naringenin moiety and signals at  $\delta$  27.1, 115.4, 130.2, 132.9 and 156.0, assignable to the *p*-hydroxybenzyl group. In the HMBC spectrum, the benzylic methylene proton at  $\delta$  3.79 (2H, s) showed long-range correlations with C-5 (161.2), C-6 (109.5), and C-7 (8 164.7). In addition, the HMBC correlations between H-8 ( $\delta$  6.05) and C-7 ( $\delta$  164.7), C-6

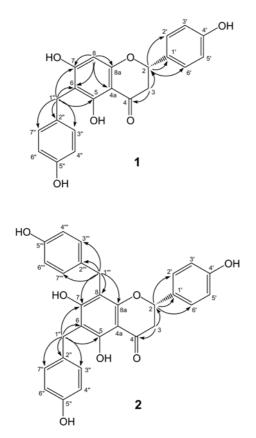



Fig. 2. Selected HMBC correlations of compounds 1 and 2.

( $\delta$  109.5), C-8a ( $\delta$  162.3), and C-4a ( $\delta$  103.0) clearly indicated that the attachment of *p*-hydroxybenzyl group was the C-6 position of naringenin. The absolute configuration at C-2 was determined by a positive Cotton effect at 333 nm and a negative Cotton effect at 289 nm in the measurement of the CD spectrum, which is characteristic for the 2*S* configuration of flavanones (Takashima and Ohsaki, 2002). Thus, compound **1** was elucidated as 5,7,4'-trihydroxy-6-*p*-hydroxybenzylflavanone.

Compound 2 was obtained as a yellow amorphous powder, and the molecular formula was determined as  $C_{29}H_{24}O_7$  by HRFAB-MS at m/z 507.1422 [M + Na]<sup>+</sup> (calcd m/z 507.1420). The <sup>1</sup>H NMR spectrum of 2 were similar to those of 1, except for the presence of two *p*substituted benzyl groups in 2, [ $\delta_{\rm H}$  3.90 (2H, s, H-1"), 7.08 (2H, d, J= 8.4 Hz, H-3", 7"), 6.68 (2H, d, J= 8.4 Hz, H-4", 6"), 3.86 (1H, d, J= 14.4 Hz, H-1""), 3.89 (1H, d, J= 14.4 Hz, H-1""), 7.02 (2H, d, J= 8.5 Hz, H-3"", 7""), and 6.66 (2H, d, J= 8.5 Hz, H-4"", 6"")], instead of one *p*substituted benzyl group in 1. The <sup>13</sup>C NMR spectrum of 2 showed the presence of 29 carbons including characteristic signals of the naringenin moiety and two *p*hydroxybenzyl groups in the molecule. The position of

#### **Natural Product Sciences**

additional *p*-hydroxybenzyl group was assigned at C-8 on the basis of the HMBC correlations between the benzylic methylene protons at  $\delta$  3.86 (1H, d, J = 14.4 Hz) and 3.89 (1H, d, J = 14.4 Hz) and carbon signals at C-7 ( $\delta$  162.3), C-8 ( $\delta$  108.1), and C-8a ( $\delta$  159.3). The absolute configuration at C-2 was deduced to be *S* from the measurement of the CD spectrum (Takashima and Ohsaki, 2002). Thus, compound **2** was elucidated as 5,7,4'-trihydroxy-6,8-di-*p*-hydroxybenzylflavanone.

All of the isolates (1 - 8) were evaluated for their potential to inhibit mouse brain MAO activity. The MAO activity in the mouse brain mitochondria was measured using the non-selective substrate, kynuramine. The results demonstrated that kaempferol (3), artocarpesin (4), and cudraflavone D (6) showed moderate inhibitory effects with IC<sub>50</sub> values of 82.3, 30.8, and 71.8  $\mu$ M, respectively. Iproniazid was used as a positive control (IC<sub>50</sub> value: 19.2  $\mu$ M). However, further studies for the selectivity and kinetic analysis for the inhibition of MAO are required to characterize the effects of the compounds in the present study.

## Acknowledgements

This work was supported by a Chungbuk National University Grant in 2008. We are grateful to Korea Basic Science Institute for <sup>1</sup>H- and <sup>13</sup>C NMR spectral measurements.

#### References

- Edmondson, D.E., Binda, C., Wang, J., Upadhyay, A.K., and Mattevi, A., Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. *Biochemistry*, **26**, 4220-4230 (2009).
- Fujimoto, T. and Nomura, T., Components of root bark of *Cudrania tricuspidata* 3. Isolation and structures studies on the flavonoids. *Planta Med.*, **51**, 190-193 (1985).
- Fujimoto, T., Hano, Y., and Nomura, T., Components of root bark of *Cudrania tricuspidata* 1. Structures of four new isoprenylated xanthones, Cudraxanthones A, B, C and D. *Planta Med.*, **50**, 218-221 (1984a).
- Fujimoto, T., Hano, Y., Nomura, T., and Uzawa., Components of root bark of *Cudrania tricuspidata* 2. Structures of two new isoprenylated flavones, Cudraflavones A and B. *Planta Med.*, 50, 161-163 (1984b).
- Han, X.H., Hong, S.S., Hwang, J.S., Jeong, S.H., Hwang, J.H., Lee, M.H., Lee, M.K., Lee, D., Ro, J.S., and Hwang, B.Y., Monoamine oxidase inhibitory constituents from the fruits of *Cudrania tricuspidata*. Arch. Pharm. Res., 28, 1324-1327 (2005).
- Hano, Y., Matsumoto, Y., Shinohara, K., Sun, J.Y., and Nomura, T., Structures of four new isoprenylated xanthones, Cudraxanthones L, M, N, and O from *Cudrania tricuspidata*. *Planta Med.*, **57**, 172-175 (1991).
- Hano, Y., Matsumoto, Y., Shinohara, K., Sun, J.Y., and Nomura, T., Cudraflavones C and D, Two new prenylflavones from the root bark

of Cudrania tricuspidata. Heterocycles, 31, 1339-1344 (1990).

- Hwang, J.H., Hong, S.S., Han, X.H., Hwang, J.S., Lee, D., Lee, H., Yun, Y.P., Kim, Y., Ro, J.S., and Hwang, B.Y., Prenylated xanthones from the root bark of *Cudrania tricuspidata*. J. Nat. Prod., **70**, 1207-1209 (2007).
- Iinuma, M., Ohyama, M., Tanaka, T., and Lang, F.A., Three new phenolic compounds from the roots of *Sophora leachiana*. J. Nat. Prod., 56, 2212-2215 (1993).
- Jung, B.S. and Shin, M.K., Encyclopedia of illustrated Korean natural drugs. Young Lim Sa, Seoul, pp. 544-545 (1990).
- Kim, J.E., Jung, M.J., Jung, H.A., Woo, J.J., Cheigh, H.S., Chung, H.Y., and Choi, J.S. A new kaempferol 7-O-triglucoside from the leaves of *Brassica juncea L. Arch. Pharm. Res.*, 25, 621-624 (2002).
- Kraml, M., A rapid microfluorimetric determination of monoamine oxidase. *Biochem. Pharmacol.*, 14, 1684-1686 (1965).
- Lee, B.W., Gal, S.W., Park, K.M., and Park, K.H., Cytotoxic xanthones from *Cudrania tricuspidata*. J. Nat. Prod., **68**, 456-458 (2005).
- Lee, I.K., Kim, C.J., Song, K.S., Kim, H.M., Koshino, H., Uramoto, M., and Yoo, I.D., Cytotoxic benzyl dihydroflavonols from *Cudrania tricuspidata*. *Phytochemistry*, **41**, 213-216 (1996).
- Lee, I.K., Kim, C.J., Song, K.S., Kim, H.M., Yoo, I.D., Koshino, H., Esumi, Y., and Uramoto, M. Two benzylated dihydroflavonols from *Cudrania tricuspidata. J. Nat. Prod.*, **58**, 1614-1617 (1995).
- Lee, Y.J., Kim, S., Lee, S.J., Ham, I., and Whang, W.K., Antioxidant activities of new flavonoids from *Cudrania tricuspidata* root bark. *Arch. Pharm. Res.*, **32**, 195-200 (2009).
- Naoi, M., and Nagatsu, T., Quinoline and quininaldines as naturally occurring inhibitors specific for type A monoamine oxidase. *Life Sci.*, 40, 1075-1082 (1987).
- Park, K.H., Park, Y.D., Han, J.M., Im, K.R., Lee, B.W., Jeong, I.Y., Jeong, T.S., and Lee, W.S., Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from *Cudrania tricuspidata. Bioorg. Med. Chem. Lett.*, 16, 5580-5583

(2006).

- Ro, J.S., Lee, S.S., Lee, K.S., and Lee, M.K., Inhibition of type A monoamine oxidase by coptisine in mouse brain. *Life Sci.*, 70, 639-645 (2001).
- Seo, E.J., Curtis-Long, M.J., Lee, B.W., Kim, H.Y., Ryu, Y.B., Jeong, T.S., Lee, W.S., and Park, K.H., Xanthones from *Cudrania tricuspidata* displaying potent a-glucosidase inhibition. *Bioorg. Med. Chem. Lett.*, 17, 6421-6424 (2007).
- Shih, J.C., Chen, K., and Ridd, M.J., Monoamine oxidase: from genes to behaviour. Annu. Rev. Neurosci., 22, 197-217 (1999).
- Takashima, J., and Ohsaki, A. Brosimacutins A-I, nine new flavonoids from *Brosimum acutifolium*. J. Nat. Prod., 65, 1843-1847 (2002).
- Tian, Y.H., Kim, H.C., Cui, J.M., and Kim, Y.C., Hepatoprotective constituents of *Cudrania tricuspidata*. Arch. Pharm. Res., 28, 44-48 (2005).
- Yamada, M. and Yasuhara, H., Clinical pharmacology of MAO inhibitors: Safety and future. *Nerurotoxicology*, 25, 215-221 (2004).
- Youdim, M.B., Edmondson, D.E., and Tipton, K.F., The therapeutic potential of monoamine oxidase inhibitors. *Nat. Rev. Neurosci.*, 7, 295-309 (2006).
- Young, H.S., Park, J.H., Park, H.J., and Choi, J.S., Chemical study of the stem of *Cudrania tricuspidata*. Arch. Pharm. Res., 12, 39-41 (1989).
- Zou, Y.S., Hou, A.J., and Zhu, G.F., Isoprenylated xanthones and flavonoids from *Cudrania tricuspidata*. *Chem. Biodivers.*, 2, 131-138 (2005).
- Zou, Y.S., Hou, A.J., Zhu, G.F., Chen, Y.F., Sun, H.D., and Zhao, Q.S., Cytotoxic isoprenylated xanthones from *Cudrania tricuspidata*. *Bioorg. Med. Chem.*, **12**, 1947-1953 (2004).

Received May 10, 2010 Revised June 16, 2010 Accepted June 16, 2010