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IDENTIFIABILITY FOR COMPOSITE
STRING VIBRATION PROBLEM

Semion Gutman and Junhong Ha

Abstract. The paper considers the identifiability (i.e., the unique iden-
tification) of a composite string in the class of piecewise constant param-
eters. The 1-D string vibration is measured at finitely many observation
points. The observations are processed to obtain the first eigenvalue and
a constant multiple of the first eigenfunction at the observation points.
It is shown that the identification by the Marching Algorithm is contin-
uous with respect to the mean convergence in the admissible set. The
result is based on the continuous dependence of eigenvalues, eigenfunc-
tions, and the solutions on the parameters. A numerical algorithm for
the identification in the presence of noise is proposed and implemented.

1. Introduction

Consider the transverse vibration of a thin string of length 1 stretched with
a unit force. Let the string be made of finitely many uniform pieces. Let its
density be ρ(x), and the piecewise constant parameter a(x) = 1/ρ(x) satisfy
0 < ν ≤ a(x) ≤ µ, x ∈ [0, 1] with a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, . . . , N .
Then the string’s displacement from the position of equilibrium u(x, t), 0 ≤
x ≤ 1, t > 0 can be modeled by

(1.1)





utt − (a(x)ux)x = f(x, t), x 6= xi, t ∈ (0, T ),
u(0, t) = q1(t), u(1, t) = q2(t), t ∈ (0, T ),
u(xi+, t) = u(xi−, t),
a(xi+)ux(xi+, t) = a(xi−)ux(xi−, t),
u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ (0, 1).

The parameter identification problem for (1.1) is to find variable parameters
a, f, q1, q2 and g such that the solution u(x, t) fits given observations z in a
prescribed (e.g., the best fit to data) sense.

The identifiability problem for (1.1) is to establish the uniqueness of the
above identification.
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One can view such a model as a special case of the remote sensing prob-
lem. When identifiability results are available, the system can be designed
accordingly.

Our main results are contained in Section 3. There we consider the string
vibration problem

(1.2)





utt − (a(x)ux)x = 0, x 6= xi, t ∈ (0, T ),
u(0, t) = 0, u(1, t) = 0, t ∈ (0, T ),
u(xi+, t) = u(xi−, t),
a(xi+)ux(xi+, t) = a(xi−)ux(xi−, t),
u(x, 0) = g ∈ H1

0 [0, 1], ut(x, 0) = h ∈ L2[0, 1]

and show that the piecewise constant parameter a(x) can be uniquely identi-
fied from finitely many observation functions zm(t) = u(pm, t), t > 0, m =
1, 2, . . . ,M − 1. These observations should be taken at a sufficiently dense in
(0, 1) set of equidistant points pm as specified in Theorem 3.3. Also in this
section we show that the identification is stable, i.e., the recovered parameters
a depend continuously on the observations zm(t). These results use certain
properties of solutions of (1.2) established in Section 2.

The main idea of our identification method is to use the Fourier transform of
the data zm(t) to find the first eigenvalue λ1 of the associated Sturm-Liouville
problem and a constant multiple Cψ1(pm) of the first eigenfunction at the
observation points. The resulting sequence of M numbers (denoted by G)
provides the input to the Marching Algorithm (see [7]) which uniquely recovers
the sought parameter a(x).

In Section 4 the identifiability results are generalized to problems with
nonzero boundary inputs q1(t) and q2(t), as well as for a nonzero external
input f(x, t). In Section 5 we present numerical results illustrating the identi-
fication of a piecewise constant parameter a(x) from the observations zm(t) of
the system.

Some identifiability results for smooth or constant parameters a were ob-
tained previously, see [14, 15, 16]. These works show that one can identify a
constant parameter a in (1.2) from the measurement z(t) taken at one point
p ∈ (0, 1). These works also discuss problems more general than (1.2), in-
cluding problems with a broad range of boundary conditions, non-zero forcing
functions, as well as elliptic and parabolic problems.

In [12], [4] and references therein identifiability results are obtained for el-
liptic and parabolic equations with discontinuous parameters in a multidimen-
sional setting. A typical assumption there is that one knows the normal deriv-
ative of the solution at the boundary of the region for every Dirichlet boundary
input. Different approaches can be found in [1, 3] and in more comprehensive
treatments [2, 10, 11].

In [7] and [8] we studied the conductivity identifiability problems and ob-
tained some fundamental results (the Marching Algorithm, the continuity of the
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eigenvalues and the eigenfunctions) critical for the string vibration problems
studied in this paper.

2. Properties of solutions

Let the admissible set be defined by

Aad = {a ∈ L∞[0, 1] : 0 < ν ≤ a(x) ≤ µ}
for some positive constants ν and µ. Admissible sets of piecewise constant
parameters are defined as follows.

Definition 2.1.

(1) Define PC = ∪∞N=1PCN ⊂ Aad, where PCN consists of piecewise con-
stant functions a(x) of the form a(x) = ai for x ∈ [xi−1, xi), i =
1, 2, . . . , N .

(2) Let σ > 0. Define

PC(σ) = {a ∈ PC : xi − xi−1 ≥ σ, i = 1, 2, . . . , N},
where x1, x2, . . . , xN−1 are the discontinuity points of a, and x0 =
0, xN = 1.

Note that a ∈ PC(σ) attains at most N = [[1/σ]] distinct values ai, 0 < ν ≤
ai ≤ µ.

Theorem 2.2. Let a ∈ PC. Then
(1) The associated Sturm-Liouville problem for (1.1)

(2.1)





(a(x)ψ(x)′)′ = −λψ(x), x 6= xi,
ψ(0) = ψ(1) = 0,
ψ(xi+) = ψ(xi−),
a(xi+)ψx(xi+) = a(xi−)ψx(xi−)

has infinitely many eigenvalues

0 < λ1 < λ2 < · · · → ∞.

The normalized eigenfunctions {ψk}∞k=1 form a basis in L2[0, 1].
(2) Each eigenvalue is simple. For each eigenvalue λk there exists a unique

continuous, piecewise smooth normalized eigenfunction ψk(x) such that
ψ′k(0+) > 0, and the function a(x)ψ′k(x) is continuous on [0, 1]. Also
ψ1(x) > 0 for x ∈ (0, 1).

(3) Eigenvalues {λk}∞k=1 satisfy the inequality

νπ2k2 ≤ λk ≤ µπ2k2.

These and other properties of the eigenvalues and the eigenfunctions of (2.1)
follow from standard arguments, see e.g. [5]. A more detailed derivation is
presented in [7] and [8].
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Let H = L2[0, 1] with the norm ‖ · ‖ and the inner product 〈·, ·〉. Let
V = H1

0 [0, 1]. Then (1.2) can be restated as an abstract differential equation
within the standard triple V ⊂ H ⊂ V ′

(2.2) u′′ +Au = 0, u(0) = g ∈ V, u′(0) = h ∈ H.
According to [13, 5], equation (2.2) has a unique weak solution u ∈ C([0, T ];V ).
We need a somewhat more detailed information about it.

Theorem 2.3. Let a ∈ PC, h ∈ H, g ∈ V . Then on D = [0, 1] × [0,∞) the
weak solution u of (2.2) is given by

(2.3) u(x, t) =
∞∑

k=1

(Ak cos(
√
λkt) +Bk sin(

√
λkt))ψk(x)

with

(2.4) Ak = 〈g, ψk〉, Bk =
〈h, ψk〉√

λk

, k = 1, 2, . . . .

Moreover, the series in (2.3) converges uniformly on D, and the solution u(x, t)
is a continuous and bounded function in D.

Proof. The partial sums in (2.3) are Galerkin approximations for the solution
of (2.2). Their weak convergence to the solution u(x, t) is established using the
energy estimate as in [13] or [5]. Under our assumptions it takes the form of
the energy conservation

(2.5)
∫ 1

0

(a(x)|ux(x, t)|2 + |ut(x, t)|2)dx =
∫ 1

0

(a(x)|g′(x)|2 + |h(x)|2)dx

for each t ≥ 0. We are going to give an explicit derivation of this equality as
well as to show the uniform convergence of the involved series.

Recall that the eigenfunctions {ψk(x)}∞k=1 form an orthonormal basis in H.
Let the coefficients Ak and Bk be defined as in (2.4). Then

∞∑

k=1

|Ak|2 = ‖g‖2H ,
∞∑

k=1

λk|Bk|2 = ‖h‖2H .

Also functions {ψk/
√
λk}∞k=1 form an orthonormal basis in Va, i.e., in V equ-

ipped with the equivalent inner product 〈av′, w′〉 for v, w ∈ V , see Theorem
6.5.2 in [5]. Thus

∞∑

k=1

λk|Ak|2 = ‖g‖2Va
=

∫ 1

0

a(x)|g′(x)|2dx.

Fix t > 0. Then

‖uN (x, t)‖2Va
=

∫ 1

0

a(x)

∣∣∣∣∣
N∑

k=1

(Ak cos(
√
λkt) +Bk sin(

√
λkt))ψ′k(x)

∣∣∣∣∣

2

dx
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=
N∑

k=1

λk|Ak cos(
√
λkt) +Bk sin(

√
λkt)|2,

|uN
t (x, t)‖2H =

∫ 1

0

∣∣∣∣∣
N∑

k=1

√
λk(−Ak sin(

√
λkt) +Bk cos(

√
λkt))ψk(x)

∣∣∣∣∣

2

dx

=
N∑

k=1

λk| −Ak sin(
√
λkt) +Bk cos(

√
λkt)|2.

Thus

(2.6)
∫ 1

0

(a(x)|uN
x (x, t)|2 + |uN

t (x, t)|2)dx =
N∑

k=1

λk(A2
k +B2

k)

and the series in (2.3) converges in Va uniformly with respect to t > 0. Since
ν‖v‖2V ≤ ‖v‖2Va

and C[0, 1] is continuously imbedded in V it follows that the
series in (2.3) converges uniformly on D, and the limit u(x, t) is continuous.
Also the norm ‖u(x, t)‖V is uniformly bounded for t > 0, thus u(x, t) is bounded
on D. Finally, one obtains (2.5) by taking the limit as N →∞ in (2.6). ¤

3. Identification map and its continuity

This section contains our main results. Here is an outline of our arguments.
Let a ∈ PC and p ∈ (0, 1). Then the string motion at the point p is given by
(3.1)

zp(t; a) = u(p, t; a) =
∞∑

k=1

(Ak cos(
√
λkt) +Bk sin(

√
λkt))ψk(p; a), t ≥ 0

with the coefficients Ak and Bk defined in (2.4). By Theorem 2.3, zp(t; a) is a
bounded continuous function for t ≥ 0.

Our goal is to extract the first eigenvalue λ1(a) and a constant multiple of
the first eigenfunction C(a)ψ1(p; a) from zp(t; a), with C(a) being independent
of the point p ∈ (0, 1). This is accomplished in Theorem 3.1 by applying
the Fourier transform to the even or odd extension of zp(t; a). Given M − 1
observation points pm this procedure defines the solution map G(a) by

(3.2) G(a) = (λ1(a), G1(a), . . . , GM−1(a)) ∈ RM , a ∈ PC,
where Gm(a) = C(a)ψ1(pm; a). Note that the M -tuple G(a) is determined from
the observations zm(t; a) = u(pm, t; a) without the knowledge of the parameter
a.

Suppose that one observes the system (1.2) at sufficiently many observation
points pm, m = 1, 2, . . . ,M − 1 equidistant on the interval (0, 1) as specified in
Theorem 3.3. This theorem asserts that the solution map G(a) can be inverted
on PC(σ), i.e., the piecewise constant parameter a can be uniquely identified
from G(a).
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This inversion procedure is accomplished by the Marching Algorithm de-
scribed and justified in [7]. The Marching Algorithm ([7], Theorem 4.6) is
applied there to the identifiability of piecewise constant conductivities in a
heat conduction problem. Since the solution of the heat conduction problem is
different from (3.1), a different procedure is used there to extract the M -tuple
G(a) from the data. However, the application of the Marching Algorithm to
G(a) is the same.

Finally in this section, we show that G is continuous (as a function of a) if
PC(σ) is equipped with the L1[0, 1] topology. Observing that PC(σ) is compact
in this topology we can conclude that the identification map G−1 is continuous.
This means that the identification procedure is stable.

Theorem 3.1. Let a, b ∈ PC, g ∈ V, h ∈ H. Let p ∈ (0, 1) and zp(t; a) be
defined by zp(t; a) = u(p, t; a), t ≥ 0, where u(x, t; a) is the weak solution of
(1.2).

(1) Suppose that h = 0. Then the Fourier transform of the even extension
zp,even(t; a) of zp(t; a) is given by

F(zp,even(t; a))(3.3)

=
1√
2π

∫ ∞

−∞
zp,even(t; a)e−iwtdt

=
∞∑

k=1

√
π

2

[
Akδ(w −

√
λk) +Akδ(w +

√
λk)

]
ψk(p; a).

(2) Suppose that g = 0. Then the Fourier transform of the odd extension
zp,odd(t; a) of zp(t; a) is given by

F(zp,odd(t; a))(3.4)

=
1√
2π

∫ ∞

−∞
zp,odd(t; a)e−iwtdt

=
∞∑

k=1

√
π

2

[
−iBkδ(w −

√
λk) + iBkδ(w +

√
λk)

]
ψk(p; a).

(3) Suppose that we have either a) g(x) > 0 on (0, 1) and h = 0, or b).
h(x) > 0 a.e on (0, 1) and g = 0. Then zp(t; a) = zp(t; b) for t > 0
implies λ1(b) = λ1(a). If g(x) > 0 on (0, 1), then Aa

1 = Ab
1. If h(x) > 0

a.e on (0, 1), then Ba
1 = Bb

1.

Proof. (1) By Theorem 2.3 the observations zp(t) are continuous and bounded
functions. Here the dependency on a is dropped for convenience. Since h = 0,
the even extension of zp(t)

(3.5) zp,even(t) =
∞∑

k=1

Ak cos(
√
λkt)ψk(p), t ∈ R

is continuous and bounded on R.
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Thus zp,even(t) ∈ S ′(R), i.e., it defines a tempered distribution on R. See
[19] for relevant definitions. Since the series in (3.1) converges uniformly on
R+, the series in (3.5) converges in S ′(R). By [19], Chapter VI, Section 2, the
Fourier transform F and its inverse are bijective continuous linear mappings of
S ′(R) onto itself. Therefore the Fourier transform of zp,even(t) can be found by
the termwise application of F to the series (3.5). Since F(eiλt) =

√
2πδ(w−λ)

the representation (3.3) follows.
(2) If g = 0, then the odd extension of zp(t) is given by

(3.6) zp,odd(t) =
∞∑

k=1

Bk sin(
√
λkt)ψk(p), t ∈ R.

Arguing as in part (1), one gets the representation (3.4).
(3) Suppose that g(x) > 0 on (0, 1) and h = 0. By Theorem 2.2(2),

ψ1(x; a) > 0 on (0, 1) for any a ∈ PC. Thus Aa
1 > 0. Therefore the first

nonzero term in the expansion (3.3) is Aa
1δ(w −

√
λ1(a)) +Aa

1δ(w +
√
λ1(a)).

Since zp(t; a) = zp(t; b) the same argument shows that the first nonzero term
in (3.3) must be Ab

1δ(w −
√
λ1(b)) + Ab

1δ(w +
√
λ1(b)). Thus λ1(a) = λ1(b)

and Aa
1 = Ab

1.
If h(x) > 0 a.e on (0, 1) and g = 0, then one uses the Fourier transform

expansion (3.4) for the odd extension of zp(t) to conclude that λ1(a) = λ1(b)
and Ba

1 = Bb
1. ¤

Remark 3.2. Suppose that g(x) > 0 on (0, 1) and h = 0. By Theorem 3.1 one
can construct the M -tuple

G(a) = (λ1(a), G1(a), . . . , GM−1(a)) ∈ RM

defined in (3.2) from the data zm(t), m = 1, 2, . . . ,M −1 as follows. First, find
the Fourier transform of zm,even(t). It has the form (3.3). The smallest positive
value of w where F(zm,even(t)) 6= 0 gives the square root of the eigenvalue
λ1(a). With λ1(a) being determined, find Gm(a) = cA1ψ1(pm; a), where c
is some constant. Since A1(a) = 〈g(x), ψ1(x; a)〉, the factor C(a) = cA1 is
independent of the observation point pm. In case h(x) > 0 a.e. on (0, 1) and
g = 0 apply the Fourier transform to the odd extension of zm(t). Use (3.4) to
find the eigenvalue λ1(a) and Gm(a) = cB1ψ1(pm; a). A numerical algorithm
for the construction of G(a) is discussed in Section 5.

Theorem 3.3. Given σ > 0 let an integer M be such that

M ≥ 3
σ

and M > 2
√
µ

ν
.

Suppose that the observations zm(t; a) = u(pm, t; a), t > 0 of (1.2) for pm =
m/M, m = 1, 2, . . . , M − 1 are given. It is assumed that the initial conditions
g and h in (1.2) satisfy h ∈ H, g ∈ V and either g(x) > 0 and h = 0 on (0, 1),
or h(x) > 0 a.e. on (0, 1) and g = 0. Then the piecewise constant parameter
a ∈ Aad is identifiable in the class of piecewise constant functions PC(σ).
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Proof. By Remark 3.2 one can use the observations zm(t), m = 1, 2, . . . ,M −1
to construct the M -tuple G(a). It is shown in [7] that the knowledge of G(a)
is sufficient for the unique identification of the piecewise constant parameter
a ∈ PC(σ). The identification of a from G(a) is accomplished by the Marching
Algorithm (see [7], Theorem 4.6). ¤

The continuity properties of the mapping G(a) are summarized in the next
theorem.

Theorem 3.4. Let PC ⊂ Aad be equipped with the L1[0, 1] topology. Assume
that the conditions of Theorem 3.3 are satisfied. Then

(1) The mapping a→ G(a) from PC into RM is continuous.
(2) The identification mapping G−1 from G(PC(σ)) ⊂ RM into PC(σ) is

continuous.

Proof. By Theorem 3.1 in [8] the mapping a → λ1(a) is continuous. By The-
orem 3.3 in [8] the mapping a → ψ1(x; a) is continuous from PC into C[0, 1].
Since C(a) = 〈g(x), ψ1(x; a)〉 and Gm(a) = C(a)ψ1(pm; a) the first assertion
follows.

Concerning (2), the set PC(σ) is compact in Aad according to Theorem 4.2
in [8]. Thus G is continuous on a compact set. By Theorem 3.3 it is invertible.
Therefore G−1 is continuous on G(PC(σ)). ¤

In the next two theorems we establish the continuity of the identification
with respect to the observations zm(t).

Theorem 3.5. Let a ∈ PC ⊂ Aad equipped with the L1[0, 1] topology, and u(a)
be the solution of the string vibration problem (1.2) with the initial conditions
g ∈ V, h ∈ H. Then the mapping a → u(a) from PC into C([0, 1] × [0, T ]) is
continuous for any T > 0.

Proof. According to Theorem 2.3 the partial sums uN (x, t; a) converge to the
solution u(x, y; a) as N → ∞ uniformly on D = [0, 1] × [0,∞). Moreover,
the rate of convergence does not depend on a ∈ PC. Thus, it is enough to
show that the map a → uN (t; a) is continuous from PC into C([0, 1] × [0, T ]).
The continuity of the eigenvalues λk(a) and the eigenfunctions ψk(x, a) as the
functions of a was established in Theorems 3.1 and 3.3 in [8]. Therefore each
term in the expansion

(3.7) uN (x, t; a) =
N∑

k=1

(Ak cos(
√
λk(a)t) +Bk sin(

√
λk(a)t))ψk(x; a)

with

Ak = 〈g, ψk(a)〉, Bk =
〈h, ψk(a)〉√

λk(a)
, k = 1, 2, . . .

is continuous with respect to a and the result follows. ¤
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Theorem 3.6. Let a ∈ PC(σ) ⊂ Aad equipped with the L1[0, 1] topology, and
the initial conditions of the string vibration problem (1.1) satisfy h ∈ H, g ∈ V
and either g(x) > 0 and h = 0, or g = 0 and h > 0 a.e. on (0, 1). Suppose that
{an}∞n=1 ⊂ PC(σ) be such that zm(t; an) → zm(t; a) in C[0, T ] as n → ∞ for
any T > 0 and all m = 1, 2, . . . ,M − 1. Then an → a in PC(σ) as n→∞.

Proof. By Theorem 4.2 in [8], the set PC(σ) is compact. Therefore, we can
assume without loss of generality (passing to a subsequence) that an → b ∈
PC(σ) as n → ∞. By Theorem 3.5, zm(t; an) → zm(t; b) in C[0, T ] as n → ∞
for any T > 0. Thus zm(t; a) = zm(t; b) for t > 0 and all m = 1, 2, . . . ,M − 1.
By Theorem 3.1 one gets G(a) = G(b). Then Theorem 3.3 implies a = b. ¤

4. Extension to boundary and external inputs

Our goal here is to extend the results of the previous section to system
(1.1). First, we derive a formula for the solution u(x, t; a) of (1.1). Then we
show how to use observations zp(t; a) = u(p, t; a) to construct theM -tuple G(a).
The parameter a is reconstructed from G(a) using the Marching Algorithm.

Theorem 4.1. Suppose that T > 0, a ∈ PC, g ∈ V, h ∈ H and f ∈
C([0, T ];H). Furthermore, assume that q1(t), q2(t) ∈ C2[0, T ] and q1(0) =
q′1(0) = q2(0) = q′2(0).

(1) Let {λk, ψk}∞k=1 be the eigenvalues and the eigenfunctions of (2.1). Let

(4.1) Φ(x, t; a) =
q2(t)− q1(t)∫ 1

0
1

a(s) ds

∫ x

0

1
a(s)

ds+ q1(t).

Let gk = 〈g, ψk〉, hk = 〈h, ψk〉, Φk(t) = 〈Φ(·, t), ψk〉 and fk(t) =
〈f(·, t), ψk〉 for k = 1, 2, . . .. Then the solution u(x, t; a) of (1.1) is
given by

(4.2) u(x, t; a) = Φ(x, t; a) +
∞∑

k=1

βk(t; a)ψk(x),

where

βk(t; a) = gk cos
√
λkt+

1√
λk

hk sin
√
λkt

+
1√
λk

∫ t

0

[fk(τ)− Φ′′k(τ)] sin
√
λk(t− τ) dτ(4.3)

for k = 1, 2, . . ..
(2) For each t > 0 and a ∈ PC the series in (4.2) converges in V . Moreover,

this convergence is uniform with respect to t on 0 ≤ t ≤ T and a ∈ PC.
The solution u(x, t; a) is continuous on [0, 1]× [0, T ].
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Proof. Since (aΦx)x = 0 we define the weak solution of (1.1) to be u(x, t; a) =
Φ(x, t; a) + v(x, t; a), where v is the weak solution of





vtt − (avx)x = −Φtt + f, 0 < x < 1, 0 < t < T,
v(0, t) = 0, 0 < t < T,
v(1, t) = 0, 0 < t < T,
v(x, 0) = g(x), 0 < x < 1,
vt(x, 0) = h(x), 0 < x < 1.

(4.4)

Let βk(t) = 〈v(·, t), ψk〉. To simplify the notation the dependency of βk on
a is suppressed. Then

β′′k (t) + λkβk(t) = −Φ′′k(t) + fk(t), βk(0) = gk, β′k(0) = hk.

Thus βk(t) has the representation stated in (4.3).
Note that (4.3) implies that

λkβ
2
k(t) ≤ 2λkg

2
k + 2h2

k + 2
[∫ t

0

(fk(τ)− Φ′′k(τ)) sin
√
λk(t− τ)dτ

]2

,

∞∑

k=1

λkg
2
k = ‖g‖2Va

,

∞∑

k=1

h2
k = ‖h‖2H

since g ∈ V , h ∈ H, and q1, q2 ∈ C2[0, T ].
Also

∞∑

k=1

[∫ t

0

(fk(τ)− Φ′′k(τ)) sin
√
λk(t− τ)dτ

]2

≤ T

∞∑

k=1

∫ T

0

|fk(τ)− Φ′′k(τ)|2dτ

= T

∫ T

0

‖f − Φtt‖2Hdτ

since f ∈ C([0, T ];H).
By Theorem 6.5.2 in [5], eigenfunctions {ψk(x)/

√
λk}∞k=1 form an orthonor-

mal basis in the energy space Va = {w ∈ V : ‖w‖2Va
=

∫ 1

0
a(x)|w′(x)|2dx <

∞}. Since
∑∞

k=1 λkβ
2
k(t) <∞, the series

∑∞
k=1 βk(t)ψk converges in Va.

Note that
√
ν‖w‖V ≤ ‖w‖Va ≤

√
µ‖w‖V . Therefore the series

∑∞
k=1 βk(t)ψk

converges in V for each t ≥ 0 uniformly with respect to a ∈ PC. Since the
estimates for βk(t; a) are independent of t, the convergence is uniform with
respect to t on 0 ≤ t ≤ T . Each coefficient βk(t) is continuous on [0, T ].
Therefore v ∈ C([0, T ];V ) is the unique weak solution of (4.4). The continuity
of v on [0, 1]×[0, T ] follows from the continuous imbedding of C[0, 1] into V . ¤

Next theorem describes some conditions under which the identifiability for
(1.1) is possible.
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Theorem 4.2. Given σ > 0 let an integer M be such that

M ≥ 3
σ

and M > 2
√
µ

ν
.

Suppose that the observations zm(t; a) = u(pm, t; a) for pm = m/M, m =
1, 2, . . . , M − 1 and t > 0 of the string vibration system (1.1) are given. Then
the parameter a ∈ Aad is identifiable in the class of piecewise constant functions
PC(σ) in each one of the following four cases.

(1) f = 0, q1 = 0, q2 = 0, g ∈ V, h ∈ H and either g(x) > 0 and h = 0
on (0, 1), or g = 0 and h(x) > 0 a.e. on (0, 1).

(2) g = 0, h = 0, q1 = 0, q2 = 0, f(x, t) = s(x)r(t), s ∈ H, s > 0 a.e. on
(0, 1), r ∈ C[0,∞).

(3) g = 0, h = 0, f = 0, q2 = 0, q1 6= 0, q1 ∈ C2[0,∞), q1(0) = q′1(0) = 0.
(4) g = 0, h = 0, f = 0, q1 = 0, q2 6= 0, q2 ∈ C2[0,∞), q2(0) = q′2(0) = 0.

Proof. In every case we show how to extract the M -tuple

G(a) = (λ1(a), G1(a), . . . , GM−1(a)) ∈ RM , a ∈ PC(σ),

where Gm(a) = C(a)ψ1(pm; a), from the observations zm(t; a). Then, as in [7],
Theorem 4.6, the Marching Algorithm uniquely recovers the sought coefficient
a(x).

(1) This is Theorem 3.3.
(2) Let

ym(t) =
∞∑

k=1

1√
λk

〈s, ψk〉 sin
√
λktψk(pm).

Arguing as in Theorem 2.3 we conclude that this series converges uni-
formly on [0,∞), and ym(t) ∈ C[0,∞). This fact and Theorem 4.1
imply that the observations zm(t) = u(pm, t; a) are given by

zm(t; a) =
∞∑

k=1

∫ t

0

1√
λk

〈s, ψk〉ψk(pm) sin
√
λk(t− τ)r(τ)dτ

=
∫ t

0

[ ∞∑

k=1

1√
λk

〈s, ψk〉 sin
√
λk(t− τ)ψk(pm)

]
r(τ)dτ.

Since r(t) ∈ C[0,∞) by the assumption, Titchmarsh Theorem ([18,
Theorem 152, Chap. XI, p. 325] or [19, Section 6.5]) implies that the
Volterra integral equation

zm(t; a) =
∫ t

0

ym(t− τ)r(τ)dτ

is uniquely solvable for ym(t).
Since s > 0 is assumed to be in H one has 〈s(x), ψ1(x; a)〉 6= 0.

Now one can proceed as in Theorem 3.1, i.e., use the Fourier transform
of the odd extension of ym(t) to find the first eigenvalue λ1(a) and a
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constant multiple C(a)ψ1(pm; a) of the first eigenfunction at pm. In
this case C(a) = c〈s, ψ1〉/

√
λ1. Thus G(a) is obtained.

(3) In this case function Φ(x, t; a) defined in (4.1) has the form Φ(x, t; a) =
α(x)q1(t) with α(0) = 1, α(1) = 0. Note that α ∈ H, but α 6∈ V .
Theorem 4.1 gives

zm(t; a) = u(pm, t; a)

= Φ(pm, t; a)−
∞∑

k=1

∫ t

0

1√
λk

〈α, ψk〉ψk(pm) sin
√
λk(t− τ)q′′1 (τ)dτ.

Let

(4.5) ym(t) =
∞∑

k=1

1√
λk

〈α, ψk〉 sin
√
λktψk(pm).

Arguing the uniform convergence of this series as in case (2), we
obtain that ym(t) is a continuous bounded function on ([0,∞) and

(4.6) zm(t; a) = α(pm)q1(t)−
∫ t

0

ym(t− τ)q′′1 (τ)dτ.

Applying the Laplace transform,

Zm(s) = α(pm)Q(s)− Ym(s)s2Q(s),

where the capitalized functions are the Laplace transforms of the cor-
responding lower case functions in (4.6). Since ym(t) is bounded on
[0,∞), its Laplace transform Ym(s) is analytic in D = {z ∈ C :
Re z > 0}. Therefore

α(pm)
s2

− Ym(s) =
Zm(s)
s2Q(s)

in D. The inverse Laplace transform gives

α(pm)t− ym(t) = L−1

{
Zm(s)
s2Q(s)

}
.

This means that given the data zm(t; a) and the boundary input q1(t)
one can uniquely determine the continuous function y(α)

m (t) = α(pm)t−
ym(t) for t ≥ 0. Extend it to t < 0 so that it will be odd. Because
of the representation (4.5), the Fourier transform of this odd extension
y
(α)
m,odd(t) is given by

F(y(α)
m,odd(t)) = i

√
2πδ′(w)α(pm)

+i
π

2

∞∑

k=1

〈a, ψk〉√
λk

[δ(w −
√
λk)− δ(w +

√
λk)]ψk(pm).(4.7)
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Recall that Φ(x, t; a) = α(x)q1(t). Therefore α(x) > 0 on (0, 1), and the
coefficient 〈α, ψ1〉 is positive. Thus the first eigenvalue λ1(a) and a con-
stant multiple of the first eigenfunction C(a)ψ1(pm) can be uniquely
determined from (4.7). That is the M -tuple G(a) is uniquely deter-
mined from the data.

(4) The proof is the same as in case (3). ¤

In each case of Theorem 4.2 one can define the solution map and its inverse.
The continuity results (with respect to a) for these maps are analogous to the
results stated in Theorems 3.5 and 3.6. Their proofs follow the same lines as
in Section 3.

5. Numerical results

In a typical numerical experiment we used ν = 0.1, µ = 1.0 for the bounds
of the admissible set, M = 12 for the number of observation points pm, and
T = 80 for the observation time interval [0, T ]. The governing system was (1.2)
with h(x) = 0 and g(x) = x(1− x). The number of discontinuity points in the
original piecewise constant parameter â varied from 2 to 3.

In one such experiment the parameter â was chosen to be

(5.1) â =





0.1, 0 ≤ x < 0.21
1.0, 0.21 ≤ x < 0.60
0.1, 0.60 ≤ x ≤ 1.0.

Its first eigenvalue is λ1(â) = 1.1528. For details of the numerical computation
of eigenvalues and eigenfunctions for (2.1) see [8]. Given such a parameter â,
the observation data ẑm(t) was computed according to (3.1) with Bk = 0 for
all k. Then the data was contaminated by noise of level η according to

zm(t) = ẑm(t) + 2η(r(ζ)− 0.5) max
0≤x≤1

|g(x)|,

where r(ζ) is a random variable uniformly distributed on interval [0, 1), and
g(x) is the initial position. The identification of the coefficient â was conducted
using J = 1025 values zm(tj) at time instants tj , j = 0, 1, . . . , J equidistant on
the interval [0, T ].

According to the algorithm developed in the previous sections, we proceed in
two steps. First, we determine the first eigenvalue λ1 and a constant multiple of
the first eigenfunction, i.e., the M -tuple G(a). In the second step the coefficient
a is recovered from G(a).

Identification of G(a)

Fix an observation point pm = m/M, m = 1, 2, . . . ,M − 1. To find λ1 from
the data collected at this point we apply the Fourier cosine transform to the
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observations zm(tj), j = 0, 1, . . . , J . Let

FC(n,m) =
2
T

∫ T

0

zm(t) cos
(
πnt

T

)
dt,

and let ñ correspond to the first maximum in the sequence |FC(n,m)|, n =
1, 2, . . .. The eigenvalue λ1 is assigned to be (πñ/T )2. The value of Gm(a) in
G(a) is chosen to be FC(ñ,m). The process is repeated for each m = 1, . . . ,M−
1. It implements numerically finding G(a) from the data zp,even(t) in (3.5).

Note, that the above algorithm assumes the choice of T such that λ1 ≥
(

π
T

)2.
According to Theorem 2.2(3) it is sufficient to take T ≥ 1√

ν
. However, the

numerical identification of λ1 is better for much larger T .
Since each observation point pm ∈ (0, 1) identifies its own value for λ1 one

has to make a choice as to how to use these values. In [8] the average of the first
eigenvalues over the middle third of the observation points was used. Here we
fixed the observation point pm to be near the middle of the observation interval
(0, 1) by choosing m = M/2, since the influence of noise at such a point would
be less pronounced. Then the relative errors

Eλ =
|λ1 − λ1(â)|

λ1(â)

were computed in several independent runs of the program. It turns out that
the first eigenvalue identified by this method is practically insensitive to low
noise levels. In our experiments we obtained the same value λ1 = 1.1242 for
all the noise levels η in the data zm(t) as indicated in Table 1.

The values of Gm in G(a) are supposed to be a constant multiple of the
first eigenfunction ψ1(pm; â) at the observation points pm. The quality of this
identification can be judged by the deviation of the ratio Gm/ψ1(pm; â) from
its average over the observation points pm. Ideally, this deviation should be
equal to zero, since the ratio is expected to be a constant. To quantify this
deviation let

Gav =
1

M − 1

M−1∑
m=1

Gm

ψ1(pm; â)

and

EG =
1
Gav

max
m

∣∣∣∣
Gm

ψ1(pm; â)
−Gav

∣∣∣∣ .
The third column in Table 1 shows the values of the relative deviation EG for
various noise levels η.

Having G(a) determined in the first step of the algorithm, the second step
consists of finding the parameter ā. While this goal may be attempted to be ac-
complished by the Marching Algorithm applied to G(a), the numerical evidence
shows that such an approach is unsatisfactory. The numerical performance of
the Marching Algorithm is excellent in accordance with the theoretical justifi-
cation only for the data G(a) very close to G(â). This would mean the relative
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errors Eλ and EG being several orders of magnitude smaller, than the ones
shown in Table 1. In practice such a close identification cannot be achieved,
and a different method such as the one described below is needed.

Identification of piecewise constant parameter ā

The data is the M -tuple G(a) = {λ1, G1, . . . , GM−1}.
(1) Fix N > 0. Form the objective function Π(a) by

(5.2) Π(a) = min
c∈R

M∑
m=1

(cGm − ψ1(pm; a))2

for the parameters a ∈ AN ⊂ Aad having at most N − 1 discontinuity
points on the interval [0, 1].

(2) Use Powell’s minimization method in K = 2N − 1 variables (N − 1
discontinuity points and N parameter a values) to find

Π(ā) = min
a∈AN

Π(a).

The minimizer ā is the sought piecewise constant parameter.
We employ the Powell’s minimization method since it does not require gradi-

ent computations, but still has a quadratic convergence near the points of min-
ima. The modification used here is from [9]. We used Brent’s one-dimensional
minimization method BA, see [17, 9], in all the minimization steps below.

Powell’s minimization method

The method iteratively minimizes a function Π(q), q ∈ RK of K variables.
Steps 1-7 describe one iteration of the method.

(1) Initialize the set of directions ui ∈ RK to the standard basis vectors in
RK

ui = ei , i = 1, . . . ,K.

(2) Save your starting position as q0 ∈ RK .
(3) For i = 1, . . . ,K move from q0 along the direction ui and find the point

of minimum pi.
(4) Re-index the directions ui, so that (for the new indices) Π(p1) ≤

Π(p2) ≤ · · · ≤ Π(pK) ≤ Π(q0).
(5) Move from q0 along the new direction u1 and find the point of minimum

r1. Move from r1 along the direction u2 and find the point of minimum
r2, etc. Move from rK−1 along the direction uK and find the point of
minimum rK .

(6) Set v = rK − q0.
(7) Move from q0 along the direction v and find the minimum. Call it q0.

It replaces q0 from step 2.
(8) Repeat the above steps until a stopping criterion is satisfied.
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Table 1. Relative errors Eλ, EG and Ea in the identification
of the piecewise constant parameter â for various noise levels
η.

η Eλ EG Ea

0.00 0.02478 0.0018 0.2299
0.02 0.02478 0.0043 0.2169
0.05 0.02478 0.0051 0.2360
0.10 0.02478 0.0077 0.2157
0.20 0.02478 0.0181 0.2067

If the minimization is to be restricted to a subset Aad ⊂ RK , then the moves
in the one-dimensional minimization steps above are restricted so that the trial
points would not leave Aad.

Thus, for N = 4, the minimization of Π(a), a ∈ AN defined in (5.2) is in
K = 2N − 1 = 7 variables representing 3 possible discontinuity points and 4
values of the parameter a on the intervals where it is constant.

The quality of the identification was measured as the relative L1 error Ea

between the original â(x) and the identified parameter ā(x):

(5.3) Ea =

∫ 1

0
|ā(x)− â(x)| dx∫ 1

0
â(x) dx

.

The relative errors Ea in the identification of the piecewise constant parameter
â for various noise levels η are shown in the fourth column of Table 1. Various
parameters used in the stopping criteria in the iterative processes in the above
algorithms were determined experimentally.

For example, for noise level η = 0.20, the identified parameter ā was

(5.4) ā =





0.1000, 0 ≤ x < 0.2081
0.9943, 0.2081 ≤ x < 0.4992
0.1112, 0.4992 ≤ x < 0.6325
0.1000, 0.6325 ≤ x ≤ 1.0,

giving the relative identification error Ea = 0.2067.
Figure 1 shows both the original parameter â defined in (5.1) (dashed line)

and the identified parameter ā (solid line).
The modification of the objective function Π(a) in (5.2) to

Π(a) = min
c∈R

M∑
m=1

(cGm − ψ1(pm; a))2 + β(λ1 − λ1(a))2,

where β > 0, did not produce an improvement in the identification.
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Figure 1. Original â (dashed line) and identified piecewise
constant parameter ā (solid line) for η = 0.20.

6. Conclusions

While in most parameter estimation problems one can hope only to achieve a
best fit to data solution, sometimes it can be shown that such an identification
is unique. In such case it is said that the sought parameter is identifiable
within a certain class. In our recent work [9] we have shown that piecewise
constant conductivities a ∈ PC(σ) are identifiable from observation zm(t; a) of
the heat conduction process taken at finitely many points pm. Conditions for
the conductivity identifiability for nonzero boundary and external inputs are
specified in [8].

In this paper we show that the piecewise constant parameter a(x) associated
with the variable density of a composite string can also be identified from
finitely many observations zm(t; a), m = 1, . . . ,M − 1. The extension of this
result to boundary and external inputs is described in Theorem 4.2.

The identification is achieved in two steps. First, one constructs the M -
tuple G(a) defined in (3.2). Here a is the piecewise constant parameter we are
seeking to identify. The finite sequence G(a) consists of the first eigenvalue
and a constant multiple of the first eigenfunction at the observation points
pm. In the second step the data G(a) is used to identify a(x) by the Marching
Algorithm, see [9].

It is shown in Theorems 3.4-3.6 that the Marching Algorithm not only pro-
vides the unique identification of the conductivity a, but that the identification
is also continuous (stable). This result is based on the continuity of eigenvalues,
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eigenfunctions, and the solutions with respect to the L1[0, 1] topology in the
set of admissible parameters Aad, see Section 3.

Numerical experiments based on the Marching Algorithm algorithm show
the perfect identification for noiseless data, if the M -tuple G(a) is identified
with no errors. As expected, the identification deteriorates significantly even for
small levels of noise in the data. Of course, in practically interesting situations
noise levels are large, so the Marching Algorithm by itself would not be useful
in such cases.

The identification algorithm for noisy data is presented in Section 5. Its
main novel point is, in agreement with the theoretical developments, the sep-
aration of the identification process into two separate steps. In step one the
first eigenvalue and a multiple of the first eigenfunction (the M -tuple G(a))
are extracted from the observations. In the second step a general minimiza-
tion method is used to find the piecewise constant parameter a(x) from G(a).
The first eigenvalue and the eigenfunction are found using the Fourier trans-
form of the observation zm(t). The second step is accomplished by Powell’s
minimization algorithm.

Numerical results in Section 5 show that this algorithm achieves very good
results in the reconstruction of G(a). Even for high level of noise the identifica-
tion of the first eigenvalue is very stable. The second step of the identification
achieves satisfactory results within the 25% relative error range, but its perfor-
mance is somewhat inferior to the precision achieved in step 1 of the method.
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