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ON SOME PROPERTIES OF BENFORD’S LAW

Dominik StrzaÃlka

Abstract. In presented paper there were studied some properties of
Benford’s law. The existence of this law in not necessary large sets of
numbers is a very interesting example that can show how the complex
phenomena can appear in the positional number systems. Such systems
seem to be very simple and intuitive and help us proceed with numbers.
However, their simplicity in the case of usage in our lifetime is not neces-
sary connected with the simplicity in the case of laws that govern them.
Even if this laws indicate the existence of self-similar properties.

1. Introduction

As it is well known the Arabic number system is based on a decimal system,
which has got ten digits. It is (probably) one of the most natural systems,
which is a matter of fact that the human has got ten fingers and this for
example facilitate the learning of counting. With the aid of ten digits one can
show in an understandable manner the whole known numbers. There are also
other number systems such as: binary, octal, hexadecimal and even Roman but
they aren’t so popular.

Without any effort one can notice that the numbers are everywhere: shares
prices, stock markets, physical and mathematical constants, weather forecast,
sport results, timetables, bills, shop prices, etc. Even more, this huge set is
everyday build up because we measure, count, calculate. When we see the
series of numbers, almost no one wonders is it matters what is the first digit
in these numbers. Almost everyone will hazard a guess that as well the digit
1 and the digit 9 initiate the same amount of numbers, i.e., they appear in
≈ 11.111% of cases (digit 0 initiate the numbers from interval (−1, 1) but all
numbers can be also shown in scientific notation, which means that they can
have a non-zero first digit). Is it true?
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2. General character of Benford’s law

In 1881 an astronomer Simon Newcomb noticed a very interesting property.
In one of his published articles [8] he stated that in the observed series of
numbers a digit 1 appears as a first significant digit more frequently than other
digits. In 1938 this observation was rediscovered by doctor Frank Benford, who
worked as a physicist in general electric laboratories and frequently used the
tables of logarithms [1]. He noticed that the pages in books with mathematical
tables of logarithms with values starting from 1 where more dirtier than the
others. Benford concluded that the scientists follow special preferences choosing
logarithms with first digit 1. He analyzed a large set of data [1, 12] and it
turned out that the digit 1 is the first significant digit in ≈ 30% of cases. He
also formulated a thesis that the probability of occurrence digit d as a first
significant digit in any number equals [1]

(1) P (d) = log10

(
1 +

1
d

)
.

Because Benford rediscovered this phenomenon and gave it more formal
character (1) nowadays we use the term Benford’s law. One can quickly con-
vince about this law analyzing a not necessary big set of data. Probably the
fact that in Benford’s law the logarithm appears is a little bit surprising but it
shouldn’t be, because our senses e.g. vision and hearing work similarly.

3. Why is that?

It should be noticed that the big set of numbers, which was previously men-
tioned, consists of numbers, which have got different units, such as: length,
volume, mass, velocity, price, etc. Each of these numbers can be written in
scientific notation, i.e., a · 10b. If one determines for them their leading digit
can assume that the distribution of these digits is governed by the function
f (x). But this function should be independent on units. If someone will multi-
ply all analyzed numbers by any positive constant this distribution should stay
unchanged. For example, lets assume that each number will be multiplied by 3.
The amount of numbers with leading digit 1 (i.e., from interval [1.0, 1.999 · · · )
multiplied by 10 to the some power) should be exactly the same like the amount
of numbers with leading digit 3, 4 or 5 (i.e., from interval [3.0, 5.999 · · · ) mul-
tiplied by 10 to the some power), because it isn’t matter what unit is used
[3].

Having the function f (x), which is the distribution of leading digits in num-
bers, one can calculate the cumulative distribution function

(2)
∫ b

a

f (x) dx.

The equation (2) can be also a proportion of numbers that have the leading
digits from interval [a, b] (see Fig.1).
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Figure 1. Theoretical shape of probability distribution of
leading digits in system with base B = 10

For a very small increment ∆x the value of f should fulfil

(3) f (1) ·∆x = f (x) · x∆x

because f (1)·∆x is a proportion of those numbers, which belong to the interval
[1, 1 + ∆x), whereas f (x) · x∆x is a proportion of numbers that belong to the
interval [x, x + x∆x). The second set is the first set multiplied by x, thus the
proportions should be equal (3), i.e.,

(4) f (x) =
f (1)

x
.

The area under curve (1) should be equal 1 in limits [1, 10), thus

∫ 10

1

f (x) dx =
∫ 10

1

f (1)
x

dx = f (1) ln x|10
1 = 1

f (1) ln 10− f (1) ln 1 = 1

f (1) =
1

ln 10
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The proportion of numbers with leading digits from interval [a, b] where
1 ≤ a ≤ b < 10 from (2) and (4) equals

∫ b

a

1
x ln 10

dx =
ln x

ln 10

∣∣∣∣
b

a

=
ln b

a

ln 10

because logx y/ logx z = logz y, thus

(5)
∫ b

a

1
x ln 10

dx = log10

b

a
.

From the equation (5) one can quickly compute the formula (1) assuming
that for example if the probability of digit 1 occurrence is computed, the in-
tegral (5) is computed in limits [1, 2), while for digit 2 in limits [2, 3) thus
b = a + 1 and the fraction b/a equals 1 + 1/a that is exactly like in (1).

4. What about the other number systems?

Benford’s law can be used in any number system with the base B. In such
a case the probability of occurrence as a first digit d (from interval [1, B − 1])
is given by [3]

(6) P (d) =
log10

(
1 + 1

d

)

log10 (B)
.

It should be emphasized that the main idea of Benford’s law is a calculation
of probability of digit d occurrence by the formula that uses the logarithm.
No matter what kind of logarithm will be used – natural, decimal or with any
other base, because

loga(b)
loga(c)

=
logd(b)
logd(a)

logd(c)
logd(a)

=
logd(b)
logd(c)

.

Thus particularly the base of used logarithm can be equal B. Thanks this, the
equation (6) can be rewritten to the following form

(7) P (d) =
logB

(
1 + 1

d

)

logB(B)
= logB

(
1 +

1
d

)
.

Having the formula (7) it is possible to calculate the distributions of leading
digits in any system with base B. The details for systems with B ∈ [2, 10] are
on Fig. 2.
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Figure 2. Benford’s law in different systems

It can be also shown that the sum of all probabilities of first digit d occur-
rence in any number system with base B equals 1

B−1∑

d=1

P (d) =
ln

(
1 + 1

1

)

ln(B)
+

ln
(
1 + 1

2

)

ln(B)
+ · · ·+

ln
(

1 + 1
B−1

)

ln(B)

=
ln

(
2
1 · 3

2 · · · · · B
B−1

)

ln(B)
=

ln(B)
ln(B)

= 1.

5. Second significant digit

The so far presented deliberations can lead to a simple question: is it possible
to calculate such probabilities for second leading digits? To obtain this it should
be noticed that for example the probability of occurrence as a second digit 7
is a sum of probabilities of occurrence of two first digits from the intervals:
[1.7, 1.8), [2.7, 2.8), . . ., [9.7, 9.8). In the first interval one obtains [4]

log10(1.8)− log10(1.7)
log10(10)− log10(1)

=
log10

(
18
17

)

log10(10)
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while in second interval it is

log10(2.8)− log10(2.7)
log10(10)− log10(1)

=
log10

(
28
27

)

log10(10)
.

Proceeding in a similar way it is possible to obtain the probabilities for
successive intervals and the probability P1(d) of digit d = 7 occurrence as a
second significant digit after first non-zero digit should be

P1(d = 7) =
log10

(
18
17

)

log10(10)
+

log10

(
28
27

)

log10(10)
+ · · ·+ log10

(
98
97

)

log10(10)

=
B−1∑

k=1

log10

(
kB+d+1

kB+d

)

log10(B)
.(8)

Remembering that: log10(a) + log10(b) = log10(a · b) it is possible to rewrite
the equation (8) and obtain

(9) P1(d) =
B−1∑

k=1

log10

(
kB+d+1

kB+d

)

log10(B)
=

1
log10(B)

log10

[
B−1∏

k=1

(
1 +

1
kB + d

)]
.

The equation (8) allows computing the probability of occurrence of any
digit at second position. In this case exists the possibility to calculate such
a probability for digit 0, which in the case of formula (1) couldn’t be taken
into account because 0 as a first significant digit has no matter. It can be
noticed that the probability for digit 0 at second position will be greater than
the probability for any other digit, because 1

kB+d is the greatest when d = 0. It
suggests that the probability of digit 0 occurrence at other positions in numbers
is also greater than the probability for rest of digits.

Let’s consider for example the quadruple system. It comes from the formulas
(6) and (8) that the probabilities of occurrence of the first and second leading
digit d in numbers are following (Table 1):

Table 1. Benford’s law probabilities in quadruple system

position digit d
n 0 1 2 3
0 0 0.5 0.292481 0.207519
1 0.303665 0.260976 0.229716 0.205643

It is clear that for second significant digits all probabilities except digit d = 0
fall. Thus immediately a question arises: what is going on at the next positions?
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Figure 3. Changes in digits probabilities for first and second
significant position in quadruple system according to Benford’s
law

5.1. Dependencies for other significant digits

It is possible to generalize the equation (8) to obtain a formula that guaran-
tees the probabilities of appearance of n-th significant digit d after first non-zero
digit. Such a generalization is given by [4]

(10) Pn(d) =
1

log10(B)

Bn−1∑

k=Bn−1

log10

(
1 +

1
kB + d

)
.

The equation (10) shows that the non-uniformity of digit distribution, if
successive positions are considered, vanishes. For example in mentioned above
quadruple system (i.e., B = 4) in the case of digit d = 2 one has got: P0(2) =
0.2924 · · · , P1(2) = 0.2297 · · · , P2(2) = 0.2454 · · · , P3(2) = 0.2489 · · · and the
probability of occurrence digit d = 2 quickly goes to 0.25 (i.e., 1/B as it should
be expected). The dominance of digit d = 0, similarly like in the case of second
significant digit, also exists (see Fig. 4).

6. Normalization of Benford’s law

Benford’s law has got many interesting properties. For example it can be
normalized, i.e., all values of first digit probabilities in different number systems
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Figure 4. Changes in digits probabilities from first to sixth
significant position according to Benford’s law in quadruple
system, B = 4

B will be divided by the probability of occurrence as a first digit 1. This
will allow the calculation of participation of probabilities of other digits in
comparison to the digit 1.

The calculations show that independently on assumed base B of number
system the proportion of probabilities of first digits occurrence is always the
same. Why is this? The answer is very simple and it comes from the observation
that the probabilities for successive digits are always divided by the probability
for digit d = 1, i.e.,

log10

(
1 + 1

d

)

log10

(
1 + 1

1

) =
log10

(
1 + 1

d

)

log10 (2)

or equivalently taking into account (7)

log2

(
1 +

1
d

)

and this relation is independent on base B thus it applies in all number sys-
tems. Such a phenomenon shows also that in the case of first significant digits
Benford’s law rules “in self”.
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7. Problem of digits dependence

Lets denote by Di the function that shows the significant digit from position
i in any number, i.e., D1(465) = 4, D2(465) = 6, D3(465) = 5, etc. For any
positive k, d1 ∈ {1, 2, . . . , 9} and dj ∈ {0, 1, . . . , 9}, j = 2, . . . , k one has got (in
decimal system) [4]

(11) P (D1 = d1, . . . , Dk = dk) = log10


1 +

(
k∑

i=1

di · 10k−i

)−1



thus P (D1 = 4, D2 = 6, D3 = 5) = log10

(
1 + (465)−1

)
≈ 9.32 · 10−4.

From the equation (11) one can compute the probability of appearance of
any mantissa with length k that consists of combination of digits according to
system base B. The normalization condition for a given k is fulfilled [4]

k∑

i=1

P (D1 = d1, . . . , Dk = dk) = 1.
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Figure 6. Changes in probabilities for digits d = 0 and d = 1
from first to sixth significant position for systems with base
B = 2, 3, 4

This condition causes that the sum of probabilities of all possible combina-
tions of digits for mantissas with length k is 1 (see Fig. 7 where the case of
system with B = 2 is considered).

Having the equation (11) it is also possible to consider one more interesting
feature in the case of Benford’s law. The so far presented equations calculate the
unconditional probabilities of any digit or mantissa appearance. For example
if digit d = 2 after first non-zero digit will be considered in decimal system
(B = 10) from (4) one will see that

P1(2) =
10−1∑

k=1

log10

(
k·10+2+1

k·10+2

)

log10(10)
≈ 0.109.

But one can calculate the conditional probability of this digit appearance,
i.e., the probability for this digit at second significant position having the knowl-
edge about the probability for first digit. This problem can be solved taking
into account the well known in probability calculus formula [10]

(12) P (B|A) =
P (AB)
P (A)

,
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Figure 7. Sum of mantissa probabilities according to Ben-
ford’s law for system with B = 2

where P (A) denotes the probability of first significant digit appearance (from
(1)), P (AB) denotes the probability of mantissa occurrence that consists of
first two digits (mantissa can have any length) in number (i.e., the first digit
– an event A, the second digit – an event B), and P (A|B) is the conditional
probability of occurrence the event B after the event A. For example let’s
consider this problem when the first digit d = 1, i.e., the event A – the digit 1
at first significant position, the event B – the digit d = 2 at second significant
position and the event AB – the mantissa 12. From (1) one will have that
P (A) ≈ 0.301, from (11) will see that P (AB) ≈ 0.0347, thus from (12)

P (B|A) ≈ 0.0347
0.301

≈ 0.115.

Two events are unconditional if P (AB) = P (A) · P (B), but if P (B) = 0,
then another condition is considered, namely if P (A|B) = P (B), then two
events are independent. Because from (8) P (B) = P1(2) ≈ 0.109 and this isn’t
equal P (A|B) ≈ 0.115 one has a very surprising conclusion: the digits that has
appeared in numbers according to Benford’s law aren’t independent.

The equation (11) can be rewritten for any system with basis B. Then for
any positive k, d1 ∈ {1, 2, . . . , B − 1} and dj ∈ {0, 1, . . . , B − 1}, j = 2, . . . , k
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one has got

(13) P (D1 = d1, . . . , Dk = dk) = logB


1 +

(
k∑

i=1

di ·Bk−i

)−1

 .

These deliberations can be illustrated by a simple example – the case of the
simplest binary system.

7.1. Probabilities for binary system

In each number system the occurrence of digit 0 as a first significant digit can
be excluded due to the fact that each number can be represented by scientific
notation, i.e., with first significant digit that is different than 0. Basing on
Benford’s law (1) it isn’t also possible to calculate the probability for it. Thus
the deliberations should be started form digit 1. In binary system its probability
of occurrence basing on the equation (7) is equal 1 because this is the only one
possible digit in this system that is different than 0. At second position the
digits 0 and 1 can occur. The probability for d = 0 is P1(0) ≈ 0.584962, while
for d = 1 it is P1(1) ≈ 0.415037. They are the unconditional probabilities.
Taking into account the formulas (12) and (13) it should be assumed that:
P (A) is the probability of occurrence the digit 1 at first significant position
(according to (7)), P (AB) is the probability of occurrence mantissas 10 or 11
(according to (13)) and P (A|B) is the conditional probability of occurrence 0
or 1 after first digit 1 according to (12).

It can be noted that in such a case the values of conditional probabilities
will be exactly the same like the values for unconditional probabilities because
the occurrence of digit 1 (P (A) event) is a certain event. Because at second
significant position there can appear digits 0 or 1 the deliberations can be
carried two ways – the probability of occurrence mantissas 10 and 11 are:
P (10) = 0.584962 · · · and P (11) = 0.415037 · · · . When the third position will
be considered the unconditional probabilities of occurrence digits 0 and 1 are
respectively: P2(0) = 0.54432 · · · and P2(1) = 0.455679 · · · . In the case of
conditional probabilities after mantissa 10 can appear 0 or 1 (similarly in the
case of mantissa 11). Thus there are possible four mantissas: 100, 101, 110,
111 that can appear with the following probabilities (from (13)): P (100) =
0.3219 · · · , P (101) = 0.26303 · · · , P (110) = 0.22239 · · · , P (111) = 0.1926 · · · .
The conditional probabilities of occurrence 0 or 1 at third position should be
considered in two cases: in the first one they will be preceded by 10 while
in the second one by 11. In the case of predecessor 10 it will be (from (12)
and (13)): for 0 – P (0|10) = 0.55033 · · · and for 1 – P (1|10) = 0.44966 · · · ;
while for predecessor 11 it will be: for 0 – P (0|11) = 0.53583 · · · and for 1 –
P (1|11) = 0.46414 · · · . The sum of probabilities at both paths will be always
equal 1.

If the following value: P (10) · P (0|10) + P (11) · P (0|11) will be computed
(from (13) and (12)) it will be equal 0.5432 · · · and it will be exactly the same
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Table 2. Conditional and unconditional probabilities for bi-
nary system

P (mantissa) mantissa
P condDEC BIN

0 0 0 - -
1 1 1 - -

0.5849625 2 10 0.584962501 P(0|1)
0.4150375 3 11 0.415037499 P(1|1)

0.32192809 4 100 0.550339713 P(0|10)
0.26303441 5 101 0.449660287 P(1|10)
0.22239242 6 110 0.535836935 P(0|11)
0.19264508 7 111 0.464163065 P(1|11)

0.169925 8 1000 0.527835266 P(0|100)
0.15200309 9 1001 0.472164734 P(1|100)
0.13750352 10 1010 0.522758699 P(0|101)
0.12553088 11 1011 0.477241301 P(1|101)
0.11547722 12 1100 0.519249787 P(0|110)
0.1069152 13 1101 0.480750213 P(1|110)

0.09953567 14 1110 0.516679038 P(0|111)
0.0931094 15 1111 0.483320962 P(1|111)

0.08746284 16 10000 0.514714377 P(0|1000)
0.08246216 17 10001 0.485285623 P(1|1000)
0.07800251 18 10010 0.513163977 P(0|1001)
0.07400058 19 10011 0.486836023 P(1|1001)
0.07038933 20 10100 0.511909266 P(0|1010)
0.0671142 21 10101 0.488090734 P(1|1010)

0.06413034 22 10110 0.510872993 P(0|1011)
0.06140054 23 10111 0.489127007 P(1|1011)
0.05889369 24 11000 0.510002669 P(0|1100)
0.05658353 25 11001 0.489997331 P(1|1100)
0.05444778 26 11010 0.509261378 P(0|1101)
0.05246742 27 11011 0.490738622 P(1|1101)
0.05062607 28 11100 0.508622399 P(0|1110)
0.0489096 29 11101 0.491377601 P(1|1110)

0.04730571 30 11110 0.508065915 P(0|1111)
0.04580369 31 11111 0.491934085 P(1|1111)

like the probability of occurrence 0 at third significant position according to
Benford’s law from the equation (10). The same can be shown in the case of
digit 1.
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8. Self-similarity of Benford’s law

Benoit Mandelbrot is usually considered as a father of fractal geometry.
However it is worth to mention other people that had a connection with frac-
tals: George Cantor, Giuseppe Peano, David Hilbert, Helge von Koch, WacÃlaw
Sierpiński, Gaston Julia or Felix Hausdorf. Their constructions (sets, curves,
etc.) were for a long time considered as a mathematical “monsters” and “oddi-
ties” or were given as a counterexamples. In famous Mandelbrot’s book “Frac-
tal geometry of nature” [7] this interpretation was changed and now it is com-
monly known that these first fractals have got many connections with shapes
that are in reality.

The self-similarity is a property that is connected with fractals. Probably
this word doesn’t require to give its interpretation, but the best explanation
can be given by the example of cauliflower: it’s small parts are similar to the
whole. But the self-similarity property can be found not only in Nature but
also in many things that are normally used. Such a property exist also in the
case of decimal (but not only this) system. This feature is so natural that many
people don’t even know or notice this fact.

Figure 8. Self-similarity of decimal system [11]

To understand the self-similarity of decimal system it should be noted that
the whole meter looks exactly the same like the decimeter, and the decimeter
looks exactly the same like centimeter and so on [11]. The simple example can
be given: 483 mm consists of 4 decimeters, 8 centimeters and 3 millimeters.
The successive digits (Fig. 8) denote their position on a ruler and there is no



ON SOME PROPERTIES OF BENFORD’S LAW 1069

need to count 483 millimeters; it is enough to find 4th decimeter then starting
from it 8th centimeter and similarly 3rd millimeter. This is very simple and
useful method and it can be compared with the problem of moving on decimal
tree.

However, the simple explanation given above about self-similarity in posi-
tional systems doesn’t give us any information about mechanisms that govern
moving on this tree. One can ask for example about conditional and uncon-
ditional probabilities of choosing one or other ways in this tree or for example
ask how is it related to Benford’s law. In some sense this is possible when one
notes that in previous section there were considered the conditional probabil-
ities of occurrence the successive digits in mantissas for binary system. The
conditional probabilities of occurrence digit 0 or 1 for successive positions go
to 0.5 for n →∞ (see Fig. 9 and Tab. 2).
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Figure 9. Conditional probabilities in system with base B =
2 according to Benford’s law

But there can be also noted one more interesting thing. If for example the
conditional probability of occurrence digit 0 after mantissa 101, i.e., P (0|101)
is analyzed it can be told that there is calculated the conditional probability
of occurrence the number 10 after 5 (both values in decimal system). It comes
from the fact that there is calculated the conditional probability of occurrence
digit 0 after 101 (the binary representation of 5) in series 1010 at fourth posi-
tion and this series also denotes the number 10 in decimal system. But if the
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conditional probability of occurrence 1 after 101, i.e., P (1|101) is calculated
then according to what was written above the conditional probability of occur-
rence the number 11 after 5 is calculated. Thus in each case there is calculated
the probability of occurrence the number 2x or 2x + 1. As it can be seen the
whole operation is in reality the shift of bits into the left and add 0 or 1. This
allows making a connection between the equation (11) and the equation (12) to
show the dependence between the unconditional and conditional probabilities
in binary system (this can be done for other systems).
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Figure 10. Conditional probabilities versus unconditional for
binary system. The magnification shows the self-similarity
property in Benford’s law

From Fig. 10 it can be seen that the self-similarity property is visible. In this
case one can reference this visualization to the examples of types of geometrical
self-similarity given in Peitgen et al. book [11]. This is a some kind of similarity
that can be related to the self-similarity at point.

9. Self-similar paths of unconditional probabilities – binary system

Taking into account the results that are presented in Fig. 10 it should be
supposed that moving on “tree” (see Fig. 8) that is created by the self-similarity
property of positional number systems in reality isn’t as simple as it seems
to be. If in set of numbers exists Benford’s law this feature may influence
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the whole picture of system self-similarity because there is a question: is the
moving on tree governed by any rules that take into account the conditional and
unconditional probabilities of successive digits appearance? As it was written
in Section 7 there is a problem of digits appearance dependence; generally
according to Benford’s law the probabilities of appearance of successive digits
in numbers aren’t independent. In Section 7.1 the case of the simplest system
(binary one) was analyzed. This leads to the Fig. 10 but the whole problem
can be analyzed in more complicated way. For example: if one takes the
number 101001 in binary system can say that this number appeared in the
following way. First we have mantissa 1 with the probability of occurrence
according to Benford’s law (eq. (7)) equal P0(d = 1) = 1, then we have a
mantissa 10 with the conditional probability of occurrence 0 after 1, given by
(12), P (0|1) = 0.584962 · · · . Next we have a mantissa 101 with the conditional
probability of occurrence 1 after 10, P (1|10) = 0.44966 · · · , etc. As a result
for each mantissa one can have a set of conditional probabilities of successive
digits appearance e.g. P (0|1), P (1|10), P (0|101), P (0|1010), P (1|10100). This
allows us to trace for each mantissa paths of unconditional probabilities versus
conditional probabilities for each number (see Fig. 11 and its zoom – Fig. 12).
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Figure 11. Moving on a self-similar tree for binary system
with Benford’s law according to conditional versus uncondi-
tional probabilities for successive digits

A binary system is the simplest one but even for quite short mantissas
(Fig. 11 and 12 show probabilities for mantissas no longer than 11 bits, i.e., the
numbers are smaller than 2048(10)) one can see that the self-similarity property
of positional system with Benford’s law can be visualized by complicated images
of conditional and unconditional probabilities dependencies.
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Figure 12. Magnification of Fig. 11 for Puncond < 0.02

9.1. More complicated example – ternary system

A more complicated example can be given in the case of ternary system. It
is still a quite simple positional number system but at each position there will
be 9 possibilities (i.e., digit 0 after 0, 1 or 2, digit 1, after 0, 1 or 2 and digit 2
after 0, 1 or 2, i.e., there will be the following conditional probabilities P (0|x),
P (1|x) and P (2|x) where x stands for any mantissa with digits 0, 1 and 2) –
let’s note that previously it was only four such choices (generally it will be B2

such choices for each position).
Visualizations for ternary system can be found in Fig. 13 and Fig. 14 where

again the complicated nature of system self-similarity property is visible. Such
visualizations can be made for other bases B; each of them will be more and
more complicated but still will be governed by similar dependencies.

10. Connections with Zipf’s law

It seems that the amount of words that are used by any human and the way
that they are used is an individual matter of everyone. Many will also assume
that there aren’t any laws that govern this process, however it is known that
there is a law, called Zipf’s law [13] (for the first time it was noted by J. B.
Estoup [2] in 1922), that for set of words X with the number of occurrences xr

ordered by the relation

(14) x1 ≥ x2 ≥ · · · ≥ xr ≥ · · · ≥ xn,

where r is a position of xr in this order, makes a connection between r and xr,
which shows that

(15) rxr = const.
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Figure 13. Moving on a self-similar tree for ternary system
with Benford’s law according to conditional versus uncondi-
tional probabilities for successive digits
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Figure 14. Magnification of Fig. 13 for Puncond < 0.02

In other words, for long texts the frequency f of given word w occurrence
multiplied by its position r on a sorted list is constant, i.e., r(w) ·f(w) = const.
Zipf analyzed James Joyce’s Ulysses and discovered that the frequency of words
occurrence is a power-law function Pr(w) ≈ 1/ra with the exponent a close to
unity. This is a very interesting phenomenon that can be also related not only
to the texts but also to the cities sizes, the income or revenue of a company, etc.
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as functions of the rank. Usually this power-law is also connected with fractals
and self-similarity property [7] and can be also related to Pareto distributions.

The connections between Zipf’s and Benford’s laws are known in literature
(see for example [5]), however in this paper it will be shown that such a con-
nection can be obtained taking into account a little bit different approach than
so far. Firstly, let’s note that some kind of analogy can be made between the
texts considered as sets of paragraphs, sentences, words where “word” is the
smallest element of whole and sets of data, which are built by different num-
bers, because numbers can be considered as “words” in the case of numerical
data. In the case of long texts one has Zipf’s law with specific function of words
probability occurrence, while for sets of numbers Benford’s law seems to be the
same case.

The equation (7) and the Fig. 2 show that if system base B grows, the
non-homogeneity of first digits d probability occurrence falls (especially when
d → B). For example when B = 3 then P (d = 1) = 0.630929 · · · and P (d =
2) = 0.36907 · · · while for B = 9 it is P (d = 1) = 0.315464 · · · and P (d =
2) = 0.184535123 · · · and between P (d = 7) = 0.060772 · · · and P (d = 8) =
0.053605 · · · the differences are quite small (≈ 0.007167). Even for small values
of B one can plot probabilities obtained for first significant digits on a log-log
scale (i.e., Fig. 2 will be plotted log(digit) vs. log(probability)). As it will turn
out in such a scale Benford’s law for different bases B will be almost straight
line with some exponent a, which values are given in Table 3 (the results were
obtained by least mean square method).

Table 3. Values of exponent for different bases B ≤ 10

Base Exponent
3 -0.7736
4 -0.7976
5 -0.8152
6 -0.8289
7 -0.8399
8 -0.8491
9 -0.8569
10 -0.8637

Obviously one can use any system base B, not necessary equal 10 but even
equal 100 or 1000. For such bases the number of first leading digits will be equal
99 or 999, etc. Such systems aren’t specially useful but they will show very
interesting connections between Benford’s and Zipf’s laws. Basing on results
from Table 3 it might be expected that the values of exponent a can tend −1
and for large bases B it is confirmed – see Table 4.

Thus if B →∞ then the value of exponent a → −1 showing that Benford’s
law for large bases B becomes similar to Zipf’s law.
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Table 4. Values of exponent for large bases B

Base Exponent
100 -0.95958
1000 -0.990777
2000 -0.994332
5000 -0.997095

11. Conclusions

Benford’s law itself is very surprising and as it was shown above can have
many interesting properties. Some of them were indicated in this paper. De-
spite the fact that it seems to be a some kind of “oddity” it has got some
interesting applications. The most known example is the problem of tax fraud
detection that was given by Mark Nigrini [9]. It is also possible to use this law
in the case of pictures analysis because their existence was there indicated [6].
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