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INCLUSION AND INTERSECTION THEOREMS WITH
APPLICATIONS IN EQUILIBRIUM THEORY

IN G-CONVEX SPACES

Mircea Balaj and Donal O’Regan

Abstract. In this paper we obtain a very general theorem of ρ-compati-
bility for three multivalued mappings, one of them from the class B. More
exactly, we show that given a G-convex space Y , two topological spaces
X and Z, a (binary) relation ρ on 2Z and three mappings P : X ( Z,
Q : Y ( Z and T ∈ B(Y, X) satisfying a set of conditions we can find
(ex, ey) ∈ X×Y such that ex ∈ T (ey) and P (ex)ρ Q(ey). Two particular cases
of this general result will be then used to establish existence theorems for
the solutions of some general equilibrium problems.

1. Introduction

Since Park and Kim introduced the concept of generalized convex space
(simply, G-convex space) [30], a large number of works contributing mainly
to the KKM theory and equilibrium theory on these spaces have appeared.
On the other hand, in the fixed point theory of multivalued mappings, Park
introduced a new class of multivalued mappings, called the “better” admissible
class B, first in topological vector spaces [23] and later in G-convex spaces [25].

In this paper, after a preliminary section, we obtain a very general theorem of
ρ-compatibility for three multivalued mappings, one of them from the class B.
More exactly, we show that given a G-convex space Y , two topological spaces X
and Z, a (binary) relation ρ on 2Z and three mappings P : X ( Z, Q : Y ( Z
and T ∈ B(Y, X) satisfying a set of conditions we can find (x̃, ỹ) ∈ X×Y such
that x̃ ∈ T (ỹ) and P (x̃)ρ Q(ỹ). Two particular cases of this general result will
be then used to establish existence theorems for the solutions of some general
equilibrium problems described below.

In many recent papers (see [1], [2], [4], [8]-[10], [12], [13], [15], [17]-[21], [29])
and the references therein) one studies one of more of the following equilibrium
problems:
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For a suitable choice of the sets X, Z and V and of the maps F : X×Z ( V
and C : X ( V we are interesting in finding x0 ∈ X such that one of the
following situations occurs:

(I) F (x0, z) ⊆ C(x0) for all z ∈ Z;
(II) F (x0, z) ∩ C(x0) 6= ∅ for all z ∈ Z;
(III) F (x0, z) * C(x0) for all z ∈ Z;
(IV) F (x0, z) ∩ C(x0) = ∅ for all z ∈ Z.
Each existence result concerning problem (I) (respectively, (II)) yields an

existence theorem for problem IV (respectively III), if we take into account
the following equivalences: F (x, z) ⊆ C(x) ⇔ F (x, y) ∩ (V \ C(x)) = ∅ and
F (x, z) ∩ C(x) 6= ∅ ⇔ F (x, z) * (V \ C(x)). For this reason we can fix our
attention on problems (I) and (II), only.

In [3] and [4] the first author extends and unifies these problems by consid-
ering a (binary) relation ρ on 2Z and looking for a point x0 ∈ X such that
F (x0, z)ρ C(x0) for all z ∈ Z. In Section 4 the following more general problem
is considered:

Let (Y,D; Γ) and (Z, D′; Γ′) be G-convex spaces, X and V be topological
spaces, C : X ( V , F : X ×Z ( V and Q : Y ( Z be three mappings and ρ
be a relation on 2V . Find x0 ∈ X such that

(V) F (x0, z)ρ C(x0) for all z ∈ Q(D).
In a very recent paper [5] the authors study the following problem:
Given a G-convex space (Y, D; Γ), two topological spaces Z and V , three

mappings P : Y ( Z, F : Y ×Z ( V,C : Z ( V and a relation ρ on 2V , find
y0 ∈ Y such that

∀u ∈ D ∃z ∈ P (y0) such that F (u, z)ρ C(z),

and, respectively

∀y ∈ Y ∃z ∈ P (y0) such that F (y, z)ρ C(z).

Each of these two problems is called, in the paper mentioned above, weak ρ-
equilibrium problem with respect to P . In the last section of the paper the two
problems will be generalized as follows:

Given a G-convex space (Y,D; Γ), three topological spaces X, Z and V ,
three mappings P : X ( Z, F : Y × Z ( V, C : Z ( V and a relation ρ on
2V , find x0 ∈ X such that

(V I1) ∀u ∈ D ∃z ∈ P (x0) such that F (u, z)ρ C(z),
and, respectively

(V I2) ∀y ∈ Y ∃z ∈ P (x0) such that F (y, z)ρ C(z).

2. Preliminaries

Let X and Y be nonempty sets. A multivalued mapping (or simply, a
mapping) T : X ( Y is a function from X into the power set of a set Y . If
y ∈ Y , the sets T−(y) = {x ∈ X : y ∈ T (x)}, T ∗(y) = {x ∈ X : y /∈ T (x)} are
called the fiber and respectively, the cofiber of T on y. For A ⊆ X, T (A) =
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⋃
x∈A T (x) is the image of A under T . If X and Y are topological spaces a

mapping T : X ( Y is said to be: (i) upper semicontinuous (in short, u.s.c)
(respectively, lower semicontinuous (in short, l.s.c.)) if for every closed subset
B of Y the set {x ∈ X : T (x) ∩ B 6= ∅} (respectively, {x ∈ X : T (x) ⊆ B}) is
closed; (ii) closed if its graph (that is, the set GrT = {(x, y) ∈ X × Y : y ∈
T (x)}) is a closed subset of X × Y ; (iii) compact if T (X) is contained in a
compact subset of Y .

The following lemma collects known facts about u.s.c. or l.s.c. mappings (see
for instance [16] for assertions (i) (ii) and (iii), respectively [31] for assertion
(iv)).

Lemma 1. Let X and Y be topological spaces and T : X ( Y be a mapping.

(i) If Y is compact and T is closed, then T is u.s.c..
(ii) If Y is regular and T is u.s.c. with closed values, then T is closed.
(iii) If X is compact and T is u.s.c. with compact values, then T (X) is

compact.
(iv) T is l.s.c. if and only if for any x ∈ X, y ∈ T (x) and any net {xα}

converging to x, there exists a net {yα} converging to y, with yα ∈
T (xα) for each α.

A generalized convex space or a G-convex space (Y, D; Γ) (see [28]) consists
of a topological space Y and a nonempty set D such that for each A ∈ 〈D〉
with the cardinality |A| = n + 1 there exists a subset Γ(A) of Y and a con-
tinuous function ΦA : ∆n → Γ(A) such that J ∈ 〈A〉 implies ΦA(∆J) ⊆ Γ(J).
Here 〈D〉 denotes the set of all nonempty finite subsets of D, ∆n denotes the
standard n-dimensional simplex with vertices {ei}n

i=0 and ∆J the face of ∆n

corresponding to J ; that is, if A = {u0, u1, . . . , un} and J = {ui0 , ui1 , . . . , uik
}

⊆ A, then ∆J =co{ei0 , ei1 , . . . , eik
}. When D is a subset of Y , as matters

stands throughout this paper, a subset C of Y is said to be G-convex if for
each A ∈ 〈C ∩D〉, Γ(A) ⊆ C.

The main example of G-convex space corresponds to the case when Y = D
is a convex subset of a topological vector space, and for each A ∈ 〈A〉, Γ(A) is
the convex hull of A. For other examples of G-convex see [26] and [27].

Let X be a topological space and (Y,D; Γ) be a G-convex space. The better
admissible class B of mappings from Y into X (see [25]) is defined as follows:

T ∈ B(Y, X) ⇔ T : Y ( X is a mapping such that for any A ∈ 〈D〉 with
the cardinality |A| = n + 1 and any continuous mapping p : T (Γ(A)) → ∆n

the composition p ◦ T|Γ(A) ◦ φA : ∆n ( ∆n has a fixed point. The class
B(Y,X) includes many important classes of mappings, such as Aκ

c (Y,X) in
[24], KKM(Y, X) in [7] and A(Y, X) in [6], as proper subclasses.

As usual, for a subset A of a topological space, we denote the interior and
the closure of A by int A and A, respectively. From now on all topological
spaces will be assumed Hausdorff.
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3. Inclusion and intersection theorems

In this section, unless otherwise specified, we shall assume that (Y,D; Γ) is
a G-convex space, X and Z are topological spaces, T ∈ B(Y, X) is compact,
P : X ( Z, Q : Y ( Z are two mappings and ρ is a (binary) relation on 2Z .
Motivated by the considerations from the previous section we will consider the
following two particular relations on 2Z : if A,B ⊆ Z, then

(i) Aρ1B ⇔ A ⊆ B;
(ii) Aρ2B ⇔ A ∩B 6= ∅;

Denote by ρc the complementary relation of ρ, that is, for any A,B ⊆ Z
exactly one of the following assertions Aρ B, Aρc B holds.

Theorem 2. Suppose that the following conditions are satisfied:
(i) X =

⋃
u∈D int {x ∈ X : P (x)ρ Q(u)};

(ii) for each x ∈ X, {y ∈ Y : P (x)ρ Q(y)} is G-convex.
Then there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ) and P (x̃)ρ Q(ỹ).

Proof. For u ∈ D set S(u) = {x ∈ X : P (x)ρ Q(u)}. Let X0 = T (Y ). Since
X0 is compact there exists a finite set A = {u0, u1, . . . , un} ⊆ D such that
X0 =

⋃n
i=0(int S(ui)∩X0). Let {α0, α1, . . . , αn} be a partition of unity on X0

subordinated to the cover {intS(ui) ∩X0 : 0 ≤ i ≤ n}. Recall that this means
that 




αi : X0 → [0, 1] is continuous for each i ∈ {0, 1, . . . , n};
αi(x) > 0 ⇒ x ∈ intS(ui);∑n

i=0 αi(x) = 1 for each x ∈ X0.

Define f : T (Γ(A)) → ∆n by

f(x) =
n∑

i=0

αi(x)ei for all x ∈ T (Γ(A)).

Clearly f is continuous. Since (Y, D; Γ) is a G-convex space there exists a
continuous function φA : ∆n → Γ(A) such that φA(∆J) ⊂ Γ(J) for each J ∈
〈A〉. Since T ∈ B(Y, X), there exists t̃ ∈ ∆n such that t̃ ∈ (f ◦ T|Γ(A) ◦ φA)(t̃).
Let ỹ = φA(t̃). Then ỹ ∈ (φA ◦ f ◦ T )(ỹ). Thus for some x̃ ∈ T (ỹ) we have
ỹ = φA(f(x̃)). Let J̃ = {i ∈ {0, 1, . . . , n} : αi(x̃) > 0}. Then f(x̃) ∈ ∆ eJ and

(1) ỹ = φA(f(x̃)) ∈ φA(∆ eJ ) ⊂ Γ({ui : i ∈ J̃}).
For each i ∈ J̃ we have x̃ ∈ intS(ui) ⊂ S(ui), hence {ui : i ∈ J̃} ⊂ S−(x̃).

By (ii) and (1) it follows that ỹ ∈ S−(x̃), that is P (x̃)ρ Q(ỹ) and the proof is
complete. ¤

Remark 1. In the particular case X = Z, P = 1X and ρ is either ρ1 or ρ2 the
previous theorem generalizes Theorems 2.5 and 2.6 in [17], 3.1 and 3.5 in [18],
and 3.1 in [20]. In the above mentioned results Y is a convex set in a topological
vector space and T ∈ KKM(Y, X). Also a particular case of Theorem 2 can
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be compared with some closely related results obtained in FC-spaces by Ding
(Theorems 4.4 in [8] and 3.1 in [9]) and Fang and Huang (Theorem 3.1 in [14]).

As usual the compactness hypothesis on T can be replaced by some coercivity
conditions. The next result is an example in this direction.

Theorem 3. Suppose that condition (i) and (ii) in Theorem 2 hold. Moreover,
assume that T (Y ) is paracompact and there exist a compact subset K of X and
B ∈ 〈D〉 such that

X \K ⊂
⋃

u∈B

int {x ∈ X : P (x)ρ Q(u)}.

Then there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ) and P (x̃)ρ Q(ỹ).

Proof. Since K is compact there exists B′ ∈ 〈D〉 such that K ⊂ ⋃
u∈B′ int {x ∈

X : P (x)ρ Q(u)}. Let A = B ∪ B′. We have Y =
⋃

u∈A int {x ∈ X :
P (x)ρ Q(u)}. Keeping the notations from the previous proof, U = {intS(u) ∩
X0 : u ∈ A} is an open cover of X0. Since X0 is paracompact, there exists a
partition of unity on X0 subordinates to U and the proof is now similar to that
of Theorem 2. ¤

We say that a mapping P : X ( Z is ρ-semicontinuous if for each open
subset G of Z the set {x ∈ X : P (x)ρ G} is open.

Remark 2. It’s clear that ρ1 (respectively, ρ2)-semicontinuity means upper
(respectively, lower)-semicontinuity.

Theorem 4. Assume that the following conditions are fulfilled:

(i) for each x ∈ X there exists u ∈ D such that P (x)ρ Q(u);
(ii) P is ρ-semicontinuous;
(iii) Q|D has open values;
(iv) for each x ∈ X, {y ∈ Y : P (x)ρ Q(y)} is G-convex.

Then there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ) and P (x̃)ρ Q(ỹ).

Proof. By (i), X =
⋃

u∈D{x ∈ X : P (x)ρ Q(u)}. By (ii) and (iii), for each
u ∈ D, {x ∈ X : P (x)ρ Q(u)} is open. Thus, condition (i) in Theorem 2 is
fulfilled. The conclusion follows from Theorem 2. ¤

When ρ = ρ1, Theorem 4 yields the following result:

Corollary 5. Assume that the following conditions are fulfilled:

(i) for each x ∈ X there exists u ∈ D such that P (x) ⊆ Q(u);
(ii) P is u.s.c;
(iii) Q has G-convex fibers and Q|D has open values.

Then there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ) and P (x̃) ⊆ Q(ỹ).
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Proof. The desired conclusion follows from Theorem 4 as soon as we prove
that for ρ = ρ1 the requirement (iv) in Theorem 4 is fulfilled. Let x ∈ X and
A ∈ 〈{u ∈ D : P (x) ⊆ Q(u)}〉. Suppose that for some y ∈ Γ(A) there exists z ∈
P (x)\Q(y). For each u ∈ A, z ∈ P (x) ⊆ Q(u), hence A ⊂ Q−(z). Since Q−(z)
is G-convex, it follows that y ∈ Q−(z), that is z ∈ Q(y). The contradiction
obtained show that the set {y ∈ Y : P (x) ⊆ Q(y)} is G-convex. ¤

Definition 1. A mapping Q : Y ( Z is said to be:
(a) G-strongly quasiconvex if for each A ∈ 〈D〉 and any y ∈ Γ(A), there is

u ∈ A such that Q(u) ⊆ Q(y).
(b) G-quasiconvex [22] if Z is a G-convex space and for each subset G-convex

M of Z the set {y ∈ Y : Q(y) ∩M 6= ∅} is G-convex.

It’s clear that a mapping G-strongly quasiconvex is G-quasiconvex.
The next result is obtained from Theorem 4, in a similar manner, when Z

is a G-convex space and ρ = ρ2.

Corollary 6. Suppose that (Z, Γ′;D′) is a G-convex space and the following
conditions are fulfilled:

(i) for each x ∈ X there exists u ∈ D such that P (x) ∩Q(u) 6= ∅;
(ii) P is l.s.c.;
(iii) Q|D has open values;
(iv) either Q is G-strongly quasiconvex or Q is G-quasiconvex and P is

G-convex valued.
Then there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ) and P (x̃) ∩Q(ỹ) 6= ∅.
Remark 3. Corollary 6 generalizes Theorem 4 in [4].

4. Existence results for Problem (V)

Throughout this section, unless otherwise specified, we shall assume that
(Y, D; Γ) and (Z, D′; Γ′) are G-convex spaces, X and V are topological spaces,
C : X ( V , F : X × Z ( V and Q : Y ( Z are three mappings and ρ is a
relation on 2V .

Theorem 7. Suppose that the following conditions are satisfied:
(i) for each z ∈ Z the set {x ∈ X : F (x, z)ρ C(x)} is closed;
(ii) Q|D has open values;
(iii) one of the following situations occurs:

(iii1) Q is strongly G-quasiconvex; or
(iii2) Q is G-quasiconvex and for each x ∈ X the set {z ∈ Z :

F (x, z)ρc C(x)} is G-convex;
(iv) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y ,

x ∈ T (y) and z ∈ Q(y) we have F (x, z)ρ C(x).
Then there exists x0 ∈ X such that F (x0, z)ρ C(x0) for all z ∈ Q(D).
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Proof. Let P : X ( Z be the mapping defined by

P (x) = {z ∈ Z : F (x, z)ρc C(x)}.
Assume that the conclusion does not hold. Then for each x ∈ X there exists
u ∈ D and z ∈ Q(u) such that F (x, z)ρcC(x), hence z ∈ P (x)∩Q(u). Since P
has open fibers (by (i)), it follows easily that P is l.s.c.. By (iii), it follows that
condition (iv) in Corollary 6 is fulfilled. By Corollary 6, there exists (x̃, ỹ) ∈
X × Y such that x̃ ∈ T (ỹ) and P (x̃) ∩ Q(ỹ) 6= ∅. Let z ∈ P (x̃) ∩ Q(ỹ). Then
z ∈ Q(ỹ) and F (x̃, z)ρc C(x̃), which contradicts (iv). ¤

The concepts introduced below extend to G-convex spaces the corresponding
notions from vector spaces (see [18]).

Definition 2. Suppose that V is a topological vector space. The mapping
F (x, ·) is said to be:

(i) C(x)-G-quasiconvex if for each x ∈ X, A ∈ 〈D′〉 and z ∈ Γ′(A) there
exists u′ ∈ A such that F (x, u′) ⊆ F (x, z) + C(x);

(ii) C(x)-G-quasiconvex-like if for each x ∈ X, A ∈ 〈D′〉 and z ∈ Γ′(A)
there exists u′ ∈ A such that F (x, z) ⊆ F (x, u′)− C(x).

Theorem 8. Assume that:
(i) C is a closed mapping;
(ii) for each z ∈ Z, F (·, z) is l.s.c.;
(iii) Q|D has open values;
(iv) one of the following situations holds:

(iv1) Q is G-strongly quasiconvex;
(iv2) Q is G-quasiconvex and for each x ∈ X F (x, ·) is G-strongly

quasiconvex;
(iv3) V is a G-convex space, Q is G-quasiconvex, and for each

x ∈ X, the set V \ C(x) is G-convex and the mapping F (x, ·) is G-
quasiconvex;

(iv4) V is a topological vector space, Q is G-quasiconvex, for each
x ∈ X C(x) is a convex cone and F (x, ·) is C(x)-G-quasiconvex;

(v) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y ,
x ∈ T (y) and z ∈ Q(y) we have F (x, z) ⊆ C(x).

Then there exists x0 ∈ X such that F (x0, z) ⊆ C(x0) for all z ∈ Q(D).

Proof. It suffices to prove that for ρ = ρ1 conditions (i) and (iii) in Theorem 7
are fulfilled. Let z ∈ Z and x ∈ P ∗(z), where P ∗(z) = {x ∈ X : F (x, z) ⊆
C(x)}. Then there exists a net {xα}α∈Λ in P ∗(z) such that xα → x. For each
α ∈ Λ, F (xα, z) ⊆ C(xα). Let v ∈ F (x, z). By (ii), via Lemma 1 (iv), there
is a net {vα}α∈Λ in V converging to v such that vα ∈ F (xα, z) for all α ∈ Λ.
Since C : X ( V is closed, v ∈ C(x) hence F (x, z) ⊆ C(x). This shows that
{x ∈ X : F (x, z) ⊆ C(x)} is closed.

One can easily check that in each of the cases (iv2) and (iv3) for x ∈ X
arbitrarily fixed the set {z ∈ Z : F (x, z) * C(x)} is G-convex and consequently
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in each of these cases condition (iii) in Theorem 7 holds. We show that the
situation is the same in case (iv4). Let A ∈ 〈D′〉 such that for each u′ ∈ A,
F (x, u′) * C(x). Suppose that for a z ∈ Γ′(A), F (x, z) ⊆ C(x). Since F (x, ·)
is C(x)-G-quasiconvex, for some u′ ∈ A we have F (x, u′) ⊆ F (x, z) + C(x) ⊆
C(x) + C(x) = C(x), which implies a contradiction. ¤

Theorem 9. Suppose that X is compact and the following conditions are
satisfied:

(i) C is a closed mapping;
(ii) for each z ∈ Z, F (·, z) is u.s.c. with nonempty compact values;
(iii) Q|D has open values;
(iv) one of the following situations holds:

(iv1) Q is G-strongly quasiconvex;
(iv2) Q is G-quasiconvex and for each x ∈ X F (x, ·) has G-convex

cofibers;
(iv3) V is a topological vector space, Q is G-quasiconvex, for each

x ∈ X, C(x) is a convex cone and F (x, ·) is C(x)-G-quasiconvex-like;
(v) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y ,

x ∈ T (y) and z ∈ Q(y) we have F (x, z) ∩ C(x) 6= ∅.
Then there exists x0 ∈ X such that F (x0, z) ∩ C(x0) 6= ∅ for all z ∈ Q(D).

Proof. We show first that for ρ = ρ2 condition (i) in Theorem 7 holds. Let
z ∈ Z and x ∈ P ∗(z), where P ∗(z) = {x ∈ X : F (x, z) ∩ C(x) 6= ∅}. Then
there exists a net {xα}α∈Λ in P ∗(z) such that xα → x. For each α ∈ Λ
there is vα ∈ F (xα, z) ∩ C(xα). Since F (·, z) is u.s.c. with nonempty compact
values and X is compact, F (X, z) =

⋃
x∈X F (x, z) is compact hence without

loss of generality we may suppose that {vα}α∈Λ converges to v ∈ F (X, z).
The space F (X, z) being compact it is regular and by Lemma 1 (ii), F (·, z) is
closed. Hence v ∈ F (x, z). Since C is closed, it follows that v ∈ C(x). Thus
v ∈ F (x, z) ∩ C(x) hence {x ∈ X : F (x, z) ∩ C(x) 6= ∅} is closed.

We show that in each of the cases (iv2) and (iv3) for x ∈ X arbitrarily fixed,
the set {z ∈ Z : F (x, z) ∩ C(x) = ∅} is G-convex and consequently in each of
these cases condition (iii) in Theorem 7 holds.

Case (iv2). Let A ∈ 〈D′〉 such that for each u′ ∈ A, F (x, u′) ∩ C(x) = ∅.
Suppose that for a z ∈ Γ′(A) there exists v ∈ F (x, z) ∩ C(x). Then v ∈ C(x)
and for each u′ ∈ A, since F (x, u′) ∩ C(x) = ∅, v /∈ F (x, u′). It follows that
A ⊆ [F (x, ·)]∗(v). The cofiber [F (x, ·)]∗(v) being convex, z ∈ [F (x, ·)]∗(v). This
implies v /∈ F (x, z); a contradiction.

Case (iv3). Let A ∈ 〈D′〉 such that for each u′ ∈ A, F (x, u′) ∩ C(x) = ∅.
Suppose that for a z ∈ Γ′(A), F (x, z) ∩ C(x) 6= ∅. Since F (x, ·) is C(x)-G-
quasiconvex-like, for some u′ ∈ A we have F (x, z) ⊆ F (x, u′) − C(x), hence
(F (x, u′) − C(x)) ∩ C(x) 6= ∅. This implies ∅ 6= F (x, u′) ∩ (C(x) + C(x)) =
F (x, u′) ∩ C(x); a contradiction.

The desired conclusion follows now from Theorem 7. ¤
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Remark 4. When Y and Z are convex sets in topological vector spaces our
theorems from this section can be compared with similar results obtained by
Lin et al. such as Theorems 4.1-4.6 in [18] and 4.1-4.4 in [20]. However, there
are at least two major differences between our results and the above mentioned
results: 1) Lin’s results involve only three mappings F , C and T ; 2) In the
above mentioned results T ∈ KKM(X, Y ). This condition is stronger than
T ∈ B(X,Y ). One can also compare Theorems 8 and 9 with Theorems 11 and
13 in [4] and Theorem 4.1 and Corollaries 4.1 and 4.3 in [14].

Example. The following example shows that although the assumptions of The-
orems 8 and 9 are not always easy to verify in practice, these theorems could be
important tools in establishing the existence of solutions for the corresponding
problems.

Let X = [−2, 2], Y = D = [−1, 1], Z = D′ = [−4, 4], V = R and for each
A ∈ 〈D〉 (respectively, A ∈ 〈D′〉) Γ(A) = coA (respectively Γ′(A) = coA). Let
the mappings C : X ( V , F : X × Z ( V , T : Y ( X and Q : Y ( Z be
defined by:

C(x) = [x2 − 3,∞), F (x, z) = [−z2 + 2xz + 6,∞),

T (y) = [y − 1, y + 1], Q(y) = (y − 2, y + 2).
Observe that F (x, z) ⊆ C(x) if and only if |x− z| ≤ 3. Since T is a Kakutani
mapping (that is, u.s.c with compact convex values) we have T ∈ B(Y, X). For
each y ∈ Y , x ∈ T (y) and z ∈ Q(y) we have |x−z| ≤ |x−y|+ |y−z| ≤ 3, hence
F (x, z) ⊆ C(x). It is easy to check that all the requirements of Theorem 8 are
fulfilled. An x0 satisfying the conclusion of Theorem 8 is x0 = 0.

5. Weak equilibrium problems

Theorem 10. Let X, Z and V be topological spaces and (Y,D; Γ) be a G-
convex space. Let C : Z ( V , F : Y ×Z ( V , P : X ( Z, be three mappings
and ρ be a relation on 2V . Assume that:

(i) P is u.s.c.;
(ii) for each z ∈ Z the set {y ∈ Y : F (y, z)ρcC(z)} is G-convex;
(iii) for each u ∈ D the set {z ∈ Z : F (u, z)ρ C(z)} is closed;
(iv) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y

and any x ∈ T (y) there exists z ∈ P (x) such that F (y, z)ρ C(z).
Then there exists x0 ∈ X such that for each u ∈ D there is z ∈ P (x0) satisfying
F (u, z)ρ C(z).

Proof. Define the mapping Q : Y ( Z by

Q(y) = {z ∈ Z : F (y, z)ρcC(z)}.
Suppose that the conclusion does not hold. Then for each x ∈ X there exists
u ∈ D such that F (u, z)ρc C(z) for all z ∈ P (x), that is, P (x) ⊆ Q(u). By (ii),
Q has G-convex values and by (iii), Q|D has open values. The requirements of
Corollary 5 are verified, hence there exists (x̃, ỹ) ∈ X × Y such that x̃ ∈ T (ỹ)
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and P (x̃) ⊆ Q(ỹ). Then for each z ∈ P (x̃) we have F (ỹ, z)ρc C(z), but this
contradicts (iv). ¤
Theorem 11. Let X,Y, Z, V, C, F and P be as in Theorem 10. Suppose that
D is dense in Y , P has compact values, the mapping S : Y ( Z defined by
S(y) = {z ∈ Z : F (y, z)ρ C(z)} is closed and conditions (i), (ii) and (iv) in
Theorem 10 are fulfilled. Then there exists x0 ∈ X such that for each y ∈ Y
there is z ∈ P (x0) satisfying F (y, z)ρ C(z), i.e., x0 is a solution of the weak
ρ-equilibrium problem with respect to P, (V I2).

Proof. Since S is a closed mapping, it has closed values hence condition (iii)
in Theorem 10 holds. By the previous theorem there is an x0 ∈ X which is
solution of the weakly ρ-equilibrium problem with respect to P , (V I1). Let
y ∈ Y . Since D is dense in Y there is a net {uα}α∈Λ converging to y. For
each α ∈ Λ there is zα ∈ P (x0) such that F (uα, zα)ρC(zα). Since P (x0)
is compact we may suppose that {zα}α∈Λ converges to a point z ∈ P (x0).
Therefore {(uα, zα)}α∈Λ is a net in GrS converging to (y, z). Since S is closed,
it follows that z ∈ S(y), that is F (y, z)ρ C(z). Hence x0 is a solution of the
weak ρ-equilibrium problem with respect to P , (V I2). ¤

In the next results from this section we will assume that (Z, D′; Γ′) is a
G-convex spaces and X, Y, V, C, F and P are as in Theorem 10.

Theorem 12. Suppose that:
(i) P is u.s.c.;
(ii) C is a closed mapping;
(iii) for each u ∈ D, F (u, ·) is l.s.c.;
(iv) one of the following situations holds:

(iv1) for each z ∈ Z, F (·, z) is G-strongly quasiconvex;
(iv2) V is a G-convex space and for each z ∈ Z, V \C(z) is G-convex

and F (·, z) G-quasiconvex;
(iv3) V is a topological vector space and for each z ∈ Z, C(z) is a

convex cone and F (·, z) is C(z)-G-quasiconvex;
(v) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y

and any x ∈ T (y) there exists z ∈ P (x) such that F (y, z) ⊆ C(z).
Then there exists x0 ∈ X such that for each u ∈ D there is z ∈ P (x0) satisfying
F (u, z) ⊆ C(z).

Proof. The mappings P, F and C satisfy all the requirements of Theorem 10
when ρ = ρ1. In order to prove that for each u ∈ D the set {z ∈ Z : F (u, z) ⊆
C(z)} is closed see the first part of the proof of Theorem 8. In order to prove
that for each z ∈ Z the set {y ∈ Y : F (y, z) * C(z)} is G-convex see the last
part of the same theorem. The conclusion follows from Theorem 10. ¤
Theorem 13. Suppose that D is dense in Y , conditions (i), (ii), (iv) and
(v) in Theorem 12 are fulfilled and condition (iii) is replaced by the following
condition:
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(iii’) F is l.s.c. on Y × Z.
Then there exists x0 ∈ X such that for each y ∈ Y there is z ∈ P (x0) satisfying
F (y, z) ⊆ C(z).

Proof. It’s clear that condition (iii’) implies condition (iii) in Theorem 12. Ac-
cording to Theorem 11 it suffices to prove that the map S : X ( Y defined
by S(y) = {z ∈ Z : F (y, z) ⊆ C(z)} is closed. Let (y, z) ∈ GrS. Then there
exists a net {(yα, zα)}α∈Λ in GrS such that (yα, zα) → (y, z). Let v ∈ F (y, z)
be arbitrarily fixed. Since F is l.s.c. on Y × Z, by Lemma 1 (iv), there is a
net {vα}α∈Λ such that vα ∈ F (yα, zα) and vα → v. For each α ∈ Λ, since
(yα, zα) ∈ GrS, we have vα ∈ F (yα, zα) ⊆ C(zα). Since C is a closed mapping
we infer that v ∈ C(z), hence (y, z) ∈ GrS. Therefore S is closed. ¤
Theorem 14. Suppose that

(i) P is u.s.c.;
(ii) C is a closed mapping;
(iii) for each u ∈ D, F (u, ·) is u.s.c.;
(iv) one of the following situations holds:

(iv1) for each z ∈ Z, F (·, z) has G-convex cofibers;
(iv2) V is a topological vector space and for each z ∈ Z, C(z) is a

convex cone and F (·, z) is C(z)-G-quasiconvex-like;
(v) there exists a compact mapping T ∈ B(Y, X) such that for each y ∈ Y

and any x ∈ T (y) there exists z ∈ P (x) such that F (y, z) ∩ C(z) 6= ∅.
Then there exists x0 ∈ X such that for each u ∈ D there is z ∈ P (x0) satisfying
F (u, z) ∩ C(z) 6= ∅.
Proof. Arguing as in the proof of Theorem 12 one can show that the mappings
P, F, C satisfy all the requirements of Theorem 10 when ρ = ρ2. Conclusion
follows from Theorem 10. ¤
Theorem 15. Suppose that D is dense in Y , V is compact, conditions (i),
(ii), (iv) and (iv) in Theorem 14 are fulfilled and condition (iii) is replaced by
the following condition:

(iii’) F is a closed mapping.
Then there exists x0 ∈ X such that for each y ∈ Y there is z ∈ P (x0) satisfying
F (y, z) ∩ C(z) 6= ∅.
Proof. According to Theorem 14 it suffices to prove that the map S : Y ( Z
defined by S(y) = {z ∈ Z : F (y, z) ∩ C(z) 6= ∅} is closed. Let (y, z) ∈ GrS.
Then there exists a net {(yα, zα)}α∈Λ in GrS such that (yα, zα) → (y, z). For
each α ∈ Λ let vα ∈ F (yα, zα) ∩ C(zα). Since V is compact we may suppose
that {vα} converges to a v ∈ V . Since F and C are closed it follows that
v ∈ F (y, z) ∩ C(z), hence (y, z) ∈ GrS. ¤

The following result is a version of Theorem 4 in [5]. It can be obtained from
Theorem 10 taking Y = Z and T (y) = {y} for all y ∈ Y . In the same manner
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from Theorems 11, 12, 13, 14 and 15 we can obtain versions of Theorems 5, 6,
7, 9 and 10 in the mentioned paper.

Theorem 16. Let (Y, D; Γ), (Z, D′; Γ′) be G-convex spaces, Y being compact,
V be a topological space, ρ be a relation on 2V and P : Y ( Z, F : Y ×Z ( V ,
C : Y ( Z be three mappings satisfying the following conditions:

(i) P is u.s.c.;
(ii) for each z ∈ Z the set {y ∈ Y : F (y, z)ρcC(z)} is G-convex;
(iii) for each u ∈ D the set {z ∈ Z : F (u, z)ρ C(z)} is closed;
(iv) for each y ∈ Y there exists z ∈ P (y) such that F (y, z)ρ C(y).

Then there exists y0 ∈ Y such that for each u ∈ D there is z ∈ P (y0) satisfying
F (u, z)ρ C(z).
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[1] Q. H. Ansari, W. Oettle, and D. Schläger, A generalization of vectorial equilibria, Math.
Methods Oper. Res. 46 (1997), no. 2, 147–152.

[2] Q. H. Ansari, S. Schaible, and J. C. Yao, System of vector equilibrium problems and its
applications, J. Optim. Theory Appl. 107 (2000), no. 3, 547–557.

[3] M. Balaj, An intersection theorem with applications in minimax theory and equilibrium
problem, J. Math. Anal. Appl. 336 (2007), no. 1, 363–371.

[4] , Coincidence and maximal element theorems and their applications to general-
ized equilibrium problems and minimax inequalities, Nonlinear Anal. 68 (2008), no. 12,
3962–3971.

[5] M. Balaj and D. O’Regan, Weak-equilibrium problems in G-convex spaces, Rend. Circ.
Mat. Palermo (2) 57 (2008), no. 1, 103–117.

[6] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.-V. Llinares, Abstract convexity
and fixed points, J. Math. Anal. Appl. 222 (1998), no. 1, 138–150.

[7] T.-H. Chang and C.-L. Yen, KKM property and fixed point theorems, J. Math. Anal.
Appl. 203 (1996), no. 1, 224–235.

[8] X. P. Ding, Genralized KKM type theorems in FC-spaces with applications. I, J. Global
Optim. 36 (2006), no. 4, 581–596.

[9] , Generalized KKM type theorems in FC-spaces with applications. II, J. Global
Optim. 38 (2007), no. 3, 367–385.

[10] X. P. Ding and T. M. Ding, KKM type theorems and generalized vector equilibrium
problems in noncompact FC-spaces, J. Math. Anal. Appl. 331 (2007), no. 2, 1230–1245.

[11] X. P. Ding and Y. J. Park, Fixed points and generalized vector equilibrium problems in
generalized convex spaces, Indian J. Pure Appl. Math. 34 (2003), no. 6, 973–990.

[12] , Generalized vector equilibrium problems in generalized convex spaces, J. Optim.
Theory Appl. 120 (2004), no. 2, 327–353.

[13] M. Fakhar and J. Zafarani, Generalized vector equilibrium problems for pseudomonotone
multivalued bifunctions, J. Optim. Theory Appl. 126 (2005), no. 1, 109–124.

[14] M. Fang and N. Huang, KKM type theorems with applications to generalized vector
equilibrium problems in FC-spaces, Nonlinear Anal. 67 (2007), no. 3, 809–817.

[15] J. Y. Fu, Generalized vector quasi-equilibrium problems, Math. Methods Oper. Res. 52
(2000), no. 1, 57–64.

[16] M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal.
Appl. 152 (1990), no. 1, 46–60.

[17] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems
with applications to generalized vector equilibrium problems, J. Optim. Theory Appl.
117 (2003), no. 1, 121–137.



INCLUSION AND INTERSECTION THEOREMS 1029

[18] L. J. Lin and H. L. Chen, The study of KKM theorems with applications to vector
equilibrium problems with implicit vector variational inequalities problems, J. Global
Optim. 32 (2005), no. 1, 135–157.

[19] L. J. Lin and W. S. Du, Systems of equilibrium problems with applications to generalized
Ekeland’s variational principle and systems of semi-infinite problems, J. Global Optim.
(2007).

[20] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applica-
tions to the existence of equilibria, J. Optim. Theory Appl. 123 (2004), no. 1, 105–122.

[21] L. J. Lin, Z. T. Yu, and G. Kassay, Existence of equilibria for multivalued mappings
and its application to vectorial equilibria, J. Optim. Theory Appl. 114 (2002), no. 1,
189–208.

[22] Z. D. Mitrovic, On scalar equilibrium problem in generalized convex spaces, J. Math.
Anal. Appl. 330 (2007), no. 1, 451–461.

[23] S. Park, Fixed points of the better admissible multimaps, Msath. Sci. Res. Hot-Line 1
(1997), no. 9, 1–6.

[24] , Foundations of the KKM theory via coincidences of composites of upper semi-
continuous maps, J. Korean Math. Soc. 31 (1994), no. 3, 493–519.

[25] , Fixed points of better admissible maps on generalized convex spaces, J. Korean
Math. Soc. 37 (2000), no. 6, 885–899.

[26] , New subclasses of generalized convex spaces, Fixed point theory and applica-
tions (Chinju, 1998), 91–98, Nova Sci. Publ., Huntington, NY, 2000.

[27] , Remarks on fixed point theorems for generalized convex spaces, Fixed point
theory and applications (Chinju, 1998), 135–144, Nova Sci. Publ., Huntington, NY,
2000.

[28] , Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), no.
6, Ser. A: Theory Methods, 869–879.

[29] , Remarks on equilibria for g-monotone maps on generalized convex spaces, J.
Math. Anal. Appl. 269 (2002), no. 1, 244–255.

[30] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces,
Proc. Coll. Natur. Sci. Seoul National University 18 (1993), 1–21.

[31] N. X. Tan and P. N. Tinh, On the existence of equilibrium points of vector functions,
Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 141–156.

Mircea Balaj
Department of Mathematics
University of Oradea
Oradea, 411087, Oradea, Romania
E-mail address: mbalaj@uoradea.ro

Donal O’Regan
Department of Mathematics
National University of Ireland
Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie


