MIXED BRIGHTNESS-INTEGRALS OF CONVEX BODIES

NI LI AND BAOCHENG ZHU

ABSTRACT. The mixed width-integrals of convex bodies are defined by E. Lutwak. In this paper, the mixed brightness-integrals of convex bodies are defined. An inequality is established for the mixed brightness-integrals analogous to the Fenchel-Aleksandrov inequality for the mixed volumes. An isoperimetric inequality (involving the mixed brightness-integrals) is presented which generalizes an inequality recently obtained by Chakerian and Heil. Strengthened version of this general inequality is obtained by introducing indexed mixed brightness-integrals.

1. Introduction and main results

The setting for this paper will be the *n*-dimensional Euclidean space, \mathbb{R}^n . Let \mathcal{K}^n denote the set of convex bodies (compact, convex subset with nonempty interiors) and \mathcal{K}^n_o denote the subspace of \mathcal{K}^n consisting of all convex bodies that contain the origin in their interiors. Let \mathcal{S}^n_o denote the set of star bodies about the origin (star-shaped, continuous radial function) in \mathbb{R}^n . The unit *n*-ball and its surface will be denoted by U and S^{n-1} , respectively. The volume of the *n*-ball, U, will be denoted by ω_n .

Lutwak introduced the notion of the mixed width-integrals of convex bodies in [8, p. 250]: For $k \in \mathcal{K}^n$ and $u \in S^{n-1}$, b(K, u) is half the width of K in the direction u. Mixed width-integrals $A(K_1, K_2, \ldots, K_n)$ of $K_1, K_2, \ldots, K_n \in \mathcal{K}^n$ was defined by

(1.1)
$$A(K_1, K_2, \dots, K_n) = \frac{1}{n} \int_{S^{n-1}} b(K_1, u) b(K_2, u) \cdots b(K_n, u) dS(u).$$

More in general, for a real number $p \neq 0$, the mixed width-integrals of order $p, A_p(K_1, K_2, \ldots, K_n)$, of $K_1, K_2, \ldots, K_n \in \mathcal{K}^n$ was also defined by Lutwak [8,

O2010 The Korean Mathematical Society

Received December 8, 2008; Revised April 29, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 52A40.

Key words and phrases. convex bodies, mixed projection bodies, brightness, mixed brightness, mixed brightness-integrals, Fenchel-Aleksandrov inequality.

Researched is supported in part by the Nature Science Foundation of China (Grant No. 10801140).

NI LI AND BAOCHENG ZHU

p. 251],

(1.2)
$$A_p(K_1, K_2, \dots, K_n) = \omega_n \left[\frac{1}{n\omega_n} \int_{S^{n-1}} b(K_1, u)^p \cdots b(K_n, u)^p dS(u) \right]^{\frac{1}{p}}.$$

And the properties of the mixed width-integrals of convex bodies were listed, such as positive, continuous, translation invariant, monotone under set inclusion, and homogeneous of degree one in each variable.

After that, the mixed chord-integrals of star bodies are defined by Fenghong Lu in [5]. For $L \in \mathcal{S}_o^n$ and $u \in S^{n-1}$, let

(1.3)
$$d(L,u) = \frac{1}{2}\rho(L,u) + \frac{1}{2}\rho(L,-u)$$

denote half the chord of L in the direction u. The mixed chord-integral, $B(L_1, \ldots, L_n)$, of $L_1, \ldots, L_n \in \mathcal{S}_o^n$ is defined by

(1.4)
$$B(L_1, \dots, L_n) = \frac{1}{n} \int_{S^{n-1}} d(L_1, u) \cdots d(L_n, u) dS(u).$$

Lutwak established some inequalities for mixed width-integrals in [6, 8]:

Theorem A. If $K_1, \ldots, K_n \in \mathcal{K}^n$ and $1 < m \le n$, then

(1.5)
$$A^m(K_1, \dots, K_n) \leq \prod_{i=0}^{m-1} A(K_1, \dots, K_{n-m}, K_{n-i}, \dots, K_{n-i}),$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar width.

Theorem B. If $K_1, \ldots, K_n \in \mathcal{K}^n$, then

(1.6)
$$V(K_1)\cdots V(K_n) \le A^n(K_1\cdots K_n),$$

with equality if and only if K_1, K_2, \ldots, K_n are n-ball.

Strengthened versions of inequality (1.6) are obtained by introducing indexed mixed width-integrals.

Theorem C. If $K_1, \ldots, K_n \in \mathcal{K}^n$, $p \neq 0$ and $-1 \leq p \leq \infty$, then

(1.7)
$$V(K_1)\cdots V(K_n) \le A_p^n(K_1\cdots K_n),$$

with equality if and only if K_1, K_2, \ldots, K_n are n-ball.

In this paper, the mixed brightness-integrals of convex bodies are defined. Half the brightness is defined by

(1.8)
$$\delta(K,u) = \frac{1}{2}h(\Pi K,u).$$

The mixed brightness-integral $D(K_1, \ldots, K_n)$ of $K_1, \ldots, K_n \in \mathcal{K}^n$ is defined by

(1.9)
$$D(K_1, \dots, K_n) = \frac{1}{n} \int_{S^{n-1}} \delta(K_1, u) \cdots \delta(K_n, u) dS(u).$$

Further, some inequalities for the mixed brightness-integrals analogous to the Fenchel-Aleksandrov inequality for the mixed volumes are established. And we obtain strengthened versions of the general inequality established by Chakerian. We mainly obtain the following results:

Theorem 1. If $K_1, \ldots, K_n \in \mathcal{K}^n$ and $1 < m \leq n$, then

(1.10)
$$D^m(K_1, \dots, K_n) \leq \prod_{i=0}^{m-1} D(K_1, \dots, K_{n-m}, K_{n-i}, \dots, K_{n-i}),$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness.

A strengthened version of inequality (1.10) is obtained:

Theorem 2. If $K_1, \ldots, K_n \in \mathcal{K}^n$ and $1 < m \le n$, then for p > 0(1.11) $D^m(K_1, \ldots, K_n) \le \prod_{m=1}^{m-1} D_m(K_1, \ldots, K_n) = K_m$

(1.11)
$$D_p^m(K_1, \dots, K_n) \le \prod_{i=0} D_p(K_1, \dots, K_{n-m}, K_{n-i}, \dots, K_{n-i}),$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness. For p < 0, inequality (1.11) is reversed.

Theorem 1 and Theorem 2 are just analogs of the Fenchel-Aleksandrov inequality for the mixed volumes.

For $K \in \mathcal{K}^n$, and $u \in S^{n-1}$, let K^u denote the image of the orthogonal projection of K onto ξ_u , the (n-1)-dimensional subspace of \mathbb{R}^n that is orthogonal to u. $v(K_1^u, \ldots, K_n^u)$ denote the mixed volume of K_1^u, \ldots, K_n^u and $v(K^u)$ denote the volume of K^u .

Theorem 3. If $K_1, \ldots, K_n \in \mathcal{K}^n$, and $u \in S^{n-1}$, then

(1.12)
$$D^n(K_1,\ldots,K_n) \le v(K_1^u) \cdots v(K_n^u),$$

with equality if and only if K_1, K_2, \ldots, K_n are all of similar brightness.

A strengthened version of inequality (1.12) is obtained:

Theorem 4. If $K_1, \ldots, K_n \in \mathcal{K}^n$, $u \in S^{n-1}$ and $-\infty \leq p \leq 1$, then

(1.13)
$$D_p^n(K_1,\ldots,K_n) \le v(K_1^u) \cdots v(K_n^u),$$

with equality if and only if K_1, K_2, \ldots, K_n are all of similar brightness and have constant joint brightness.

2. Preliminaries

2.1. Support function and radial function

Let h(K, u) denote the support function (restricted to the unit sphere) of $K \in \mathcal{K}^n$; i.e., for $u \in S^{n-1}$,

(2.1)
$$h(K, u) = \max\{u \cdot x : x \in K\},$$

where $u \cdot x$ denote the usual inner product of x and u in \mathbb{R}^n .

For $K_1, K_2, \ldots, K_n \in \mathcal{K}^n$ and $\lambda_1, \ldots, \lambda_n \geq 0$, the Minkowski linear combination $\lambda_1 K_1 + \cdots + \lambda_n K_n \in \mathcal{K}^n$ is defined by

$$(2.2) \quad \lambda_1 K_1 + \dots + \lambda_n K_n = \{\lambda_1 x_1 + \dots + \lambda_n x_n \in \mathcal{K}^n : x_i \in K_i, 1 \le i \le n\}.$$

It is trivial to verify that

(2.3)
$$h(\lambda_1 K_1 + \dots + \lambda_n K_n, u) = \lambda_1 h(K_1, u) + \dots + \lambda_n h(K_n, u).$$

The support function h(K, u) is a sublinear function, which satisfies

(2.4)
$$h(K,\lambda u) = \lambda h(K,u), \ h(K,u+v) \leq h(K,u) + h(K,v)$$

for $\lambda \geq 0$.

It is very clear from the definition that $K \subset L$ if and only if

$$h(K,u) \le h(L,u)$$

A compact convex set K is centered if and only if

(2.6)
$$h(K, u) = h(K, -u).$$

The group of nonsingular linear transformations is denoted by GL(n). Let $\phi \in GL(n)$, the transpose and inverse are denoted by ϕ^t and ϕ^{-1} . Then

(2.7)
$$h(\phi K, u) = h(K, \phi^{t} u) = \|\phi^{t} u\| h\left(K, \frac{\phi^{t} u}{\|\phi^{t} u\|}\right)$$

for all $u \in S^{n-1}$.

The radial function $\rho(K, u)$ of the convex body K is

(2.8)
$$\rho(K, u) = \sup\{\lambda > 0 : \lambda u \in K\}, \ u \in S^{n-1}.$$

2.2. Brightness and mixed brightness

For convex bodies $K_1, \ldots, K_{n-1} \in \mathcal{K}^n$ and a direction $u \in S^{n-1}$, the mixed brightness of K_1, \ldots, K_{n-1} in the direction $u, \sigma(K_1, \ldots, K_{n-1}; u)$, is defined by

(2.9)
$$\sigma(K_1,\ldots,K_{n-1};u) = nV(K_1,\ldots,K_{n-1},\langle u\rangle),$$

where $V(K_1, \ldots, K_{n-1}, \langle u \rangle)$ denote the mixed volume of $K_1, \ldots, K_{n-1}, \langle u \rangle$ and $\langle u \rangle$ denote the closed line segment.

Since $h(\langle u \rangle, \bar{u}) = \frac{1}{2} |u \cdot \bar{u}|$, we obtain

(2.10)
$$\sigma(K_1, \dots, K_{n-1}; u) = \frac{1}{2} \int_{S^{n-1}} |u \cdot \bar{u}| d(K_1, \dots, K_{n-1}; \bar{u}).$$

For $K \in \mathcal{K}^n$, and $u \in S^{n-1}$, the mixed brightness of K_1, \ldots, K_{n-1} in the direction u can be written as

(2.11)
$$\sigma(K_1, \dots, K_{n-1}; u) = v(K_1^u, \dots, K_{n-1}^u),$$

If $K_1 = \cdots = K_{n-i-1} = K$ and $K_{n-i} = \cdots = K_{n-1} = \overline{K}$, then the mixed brightness $\sigma(K_1, \ldots, K_{n-1}; u)$ is written as $\sigma_i(K, \overline{K}; u)$. If i = 0, then $\sigma(K, u)$ is called the brightness of K in the direction u. From (2.11) we have

(2.12)
$$\sigma_i(K, \bar{K}; u) = u(K^u, \bar{K}^u), \ \sigma(K, u) = v(K^u).$$

2.3. Projection and mixed projection bodies

The projection body, ΠK , of the body $K \in \mathcal{K}^n$ is defined as the convex figure whose support function is given, for $u \in S^{n-1}$, by

(2.13)
$$h(\Pi K, u) = v(K^u).$$

From (2.10), (2.12), and (2.13), we can see that the homogeneous extension of degree 1 of $h(\Pi K, u)$ is a convex function and hence ΠK is a convex figure. From (2.13), it is easy to see that a projection body is always centered (symmetric about the origin), and if K has interior points, then ΠK will have interior points as well.

If $K_1, \ldots, K_{n-1} \in \mathcal{K}^n$, then the mixed projection body of K_1, \ldots, K_{n-1} is denoted by $\Pi(K_1, \ldots, K_{n-1})$, and defined by

(2.14)
$$h(\Pi(K_1, \dots, K_{n-1}), u) = \sigma(K_1, \dots, K_{n-1}; u).$$

It is easy to see that the mixed projection body, $\Pi(K_1, \ldots, K_{n-1})$, must be a convex body that is symmetric with respect to the origin from (2.10) and (2.14).

The following is a list of the basic properties of the mixed projection operator.

The projection operator is multilinear with respect to Minkowski linear combinations; i.e., if $K_1, K'_1, K_2, \ldots, K_{n-1} \in \mathcal{K}^n$ and $\lambda, \lambda' \geq 0$, then

(2.15)
$$\Pi(\lambda K_1 + \lambda' K_1', K_2, \dots, K_{n-1}) = \lambda \Pi(K_1, K_2, \dots, K_{n-1}) + \lambda' \Pi(K_1', K_2, \dots, K_{n-1}).$$

If $K_1, \ldots, K_{n-1} \in \mathcal{K}^n$, and $\phi \in GL(n)$, then

(2.16)
$$\Pi(\phi K_1, \dots, \phi K_{n-1}) = |\det \phi| \phi^{-t}(\Pi(K_1, \dots, K_{n-1})).$$

The mixed projection operator is monotone nondecreasing with respect to set inclusion (by seeing [10, p. 907]); i.e., if $K_i, L_i \in \mathcal{K}^n$, and $K_i \subset L_i$, $1 \leq i \leq n-1$, then

(2.17)
$$\Pi(K_1, \dots, K_{n-1}) \subset \Pi(L_1, \dots, L_{n-1}).$$

From the corresponding properties of the (n-1)-dimensional mixed volumes and (2.9) or (2.11), it follows that the mixed projection bodies $\Pi(K_1, \ldots, K_{n-1})$ is symmetric in its argument, and for $x_1, \ldots, x_n \in \mathbb{R}^n$, we have

(2.18)
$$\Pi(x_1 + K_1, \dots, x_n + K_n) = \Pi(K_1, \dots, K_n)$$

2.4. Mixed volumes

For $K_1, \ldots, K_n \in \mathcal{K}^n$, and $u \in S^{n-1}$, then the following equation relates mixed volumes $V(K_1, \ldots, K_n)$ and mixed area measures $S(K_1, \ldots, K_{n-1}, u)$:

(2.19)
$$V(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} h(K_n,u) dS(K_1,\ldots,K_{n-1},u).$$

3. Mixed brightness-integrals of convex bodies

3.1. Half the brightness

Definition 1. If $K \in \mathcal{K}^n$ and $u \in S^{n-1}$, we let

$$\delta(K, u) = \frac{1}{2}h(\Pi K, u),$$

i.e., $\delta(K, u)$ denotes half the brightness of K in the direction u. Convex bodies K_1, \ldots, K_n are said to have similar brightness if there exist constants $\lambda_1, \lambda_2, \ldots, \lambda_n > 0$ such that $\lambda_1 \delta(K_1, u) = \cdots = \lambda_n \delta(K_n, u)$ for all $u \in S^{n-1}$; they are said to have constant joint brightness if the product $\delta(K_1, u) \cdots \delta(K_n, u)$ is constant for all $u \in S^{n-1}$. For reference see Gardner [3] and schneider [11].

3.2. Mixed brightness-integral

Definition 2. Following Lutwak, we define the mixed brightness-integrals of convex bodies:

For $K_1, K_2, \ldots, K_n \in \mathcal{K}^n$, the mixed brightness-integral

$$D(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} \delta(K_1,u) \cdots \delta(K_n,u) dS(u).$$

By this definition, D is a map

$$D:\underbrace{\mathcal{K}^n\times\cdots\times\mathcal{K}^n}_n\to\mathbb{R}.$$

3.3. The properties of mixed brightness-integrals

We list some of its elementary properties.

(1) (*Positively homogeneous*) If $K_1, \ldots, K_n \in \mathcal{K}^n$ and $\lambda_1, \ldots, \lambda_n > 0$, then

 $D(\lambda_1 K_1, \dots, \lambda_n K_n) = \lambda_1 \cdots \lambda_n D(K_1, \dots, K_n).$

- (2) (Continuity) The mixed brightness-integrals $D(K_1, \ldots, K_n)$ is a continuous function of $K_1, \ldots, K_{n-1} \in \mathcal{K}^n$.
- (3) (Monotonicity for set inclusion) If $K_i, L_i \in \mathcal{K}^n, K_i \subset L_i$ and $1 \le i \le n$, then

 $D(K_1,\ldots,K_n) \le D(L_1,\ldots,L_n),$

with equality if and only if $K_i = L_i$ for $1 \le i \le n$.

(4) (Nonnegativity) For $K_1, \ldots, K_n \in \mathcal{K}^n$, $D(K_1, \ldots, K_n) \ge 0$.

(5) (Invariance under individual translation) If $x \in \mathbb{R}^n$, then

$$D(K_1 + x, K_2, \dots, K_n) = D(K_1, \dots, K_n).$$

(6) (Invariance under linear transformation) If $K_1, \ldots, K_n \in \mathcal{K}^n$, and $\phi \in GL(n)$, then

$$D(\phi K_1, \ldots, \phi K_n) = D(K_1, \ldots, K_n).$$

Proof. (1) From (2.3) and (2.15), we can get

$$\delta(\lambda_i K_i, u) = \frac{1}{2}h(\Pi\lambda_i K_i, u) = \frac{1}{2}h(\lambda_i \Pi K_i, u) = \frac{1}{2}\lambda_i h(\Pi K_i, u) = \lambda_i \delta(K_i, u)$$

for $1 \leq i \leq n$. Then, from the definition, we can obtain,

$$D(\lambda_1 K_1, \dots, \lambda_n K_n) = \frac{1}{n} \int_{S^{n-1}} \delta(\lambda_1 K_1, u) \cdots \delta(\lambda_n K_n, u) dS(u)$$
$$= \lambda_1 \cdots \lambda_n \frac{1}{n} \int_{S^{n-1}} \delta(K_1, u) \cdots \delta(K_n, u) dS(u)$$
$$= \lambda_1 \cdots \lambda_n D(K_1, \dots, K_n).$$

(2) The polar coordinate formula for mixed volume of bodies K_1, \ldots, K_n in \mathbb{R}^n is

$$\tilde{V}(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} \rho(K_1,u) \cdots \rho(K_n,u) d(u).$$

From the continuity of the mixed volume and Minikowski addition, we can see the support function is continuous. Hence, the mixed brightness-integral is a continuous function.

(3) For $K_i, L_i \in \mathcal{K}^n, K_i \subset L_i$ and $1 \leq i \leq n$, from (2.17) and (2.5), we have $\Pi K_i \subset \Pi L_i$,

then

$$h(\Pi K_i, u) \le h(\Pi L_i, u),$$

hence,

$$D(K_1,\ldots,K_n) \le D(L_1,\ldots,L_n),$$

with equality if and only if $K_i = L_i$ for $1 \le i \le n$.

(4) The mixed projection body, $\Pi(K_1, \ldots, K_n)$, is a convex body that is symmetric with respect to the origin, then $h(\Pi K_i, u) > 0$ for $1 \le i \le n$. From the definition,

$$D(K_1,\ldots,K_n)>0.$$

In particular, if any K_i is a single point, then ΠK_i is the origin. In this case, $h(\Pi K_i) = 0$, then

$$D(K_1,\ldots,K_n)=0$$

Hence,

$$D(K_1,\ldots,K_n)\geq 0.$$

(5) From (2.18), we have

$$\delta(K_1 + x, u) = \frac{1}{2}h(\Pi(K_1 + x), u) = \frac{1}{2}h(\Pi(K_1), u) = \delta(K_1, u),$$

hence,

$$D(K_1+x,K_2,\ldots,K_n)=D(K_1,\ldots,K_n).$$

(6) From (2.16) and (2.7), we can get

$$\begin{split} \delta(\phi K, u) &= \frac{1}{2} h(\Pi(\phi K), u) \\ &= \frac{1}{2} h(|\det \phi| \phi^{-t}(\Pi K), u) \\ &= \frac{1}{2} |\det \phi| h(\phi^{-t}(\Pi K), u) \\ &= \frac{1}{2} |\det \phi| h(\Pi K, \phi^{-1} u) \\ &= \frac{1}{2} |\det \phi| \| \phi^{-1} u \| h\left(\Pi K, \frac{\phi^{-1} u}{\|\phi^{-1} u\|}\right) \\ &= \frac{1}{2} h(\Pi K, u) \\ &= \delta(\phi K, u'), \end{split}$$

where $u' \in S^{n-1}$.

Hence,

$$D(\phi K_1, \dots, \phi K_n) = D(K_1, \dots, K_n).$$

3.4. Mixed brightness-integral of order p

Just as the width-integral $B_i(K)$ [6] of $K \in \mathcal{K}^n$, are defined to be the special mixed width-integral

$$A(\underbrace{K,\ldots,K}_{n-i},\underbrace{U,\ldots,U}_{i}),$$

the brightness-integral $C_i(K)$ of $K\in \mathcal{K}^n,$ can be defined as the special mixed brightness-integral

$$D(\underbrace{K,\ldots,K}_{n-i},\underbrace{U,\ldots,U}_{i}).$$

Now we generalize the notion of the mixed brightness-integral of convex bodies: For $K_1, \ldots, K_n \in \mathcal{K}^n$, and a real number $p \neq 0$, the mixed brightnessintegral of order $p, D_p(K_1, \ldots, K_n)$ of K_1, \ldots, K_n is defined by

$$D_p(K_1, K_2, \dots, K_n) = \omega_n \left[\frac{1}{n\omega_n} \int_{S^{n-1}} \delta(K_1, u)^p \cdots \delta(K_n, u)^p dS(u) \right]^{\frac{1}{p}}$$

Specially p = 1, this definition is just Definition 1.

4. Inequalities for the mixed-brightness integrals

In order to prove the conclusions in the introduction, we require the following simply extension of Hölder's inequality.

Lemma 1. If f_0, f_1, \ldots, f_m are (strictly) positive continuous functions defined on S^{n-1} and $\lambda_1, \ldots, \lambda_m$ are positive constants the sum of whose reciprocals is unity, then

$$\int_{S^{n-1}} f_0(u) f_1(u) \cdots f_m(u) dS(u) \le \prod_{i=1}^m \left[\int_{S^{n-1}} f_0(u) f_i^{\lambda_i}(u) dS(u) \right]^{\frac{1}{\lambda_i}},$$

with equality if and only if there exist positive constants $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that $\alpha_1 f_1^{\lambda_1}(u) = \cdots = \alpha_m f_m^{\lambda_m}(u)$ for all $u \in S^{n-1}$.

Proof of Theorem 1. For $K_1, \ldots, K_n \in \mathcal{K}^n$, let

$$\begin{aligned} \lambda_i &= m(1 \le i \le m), \\ f_0 &= \delta(K_1, u) \cdots \delta(K_{n-m}, u) \ (f_0 = 1 \text{ if } m = n), \\ f_i &= \delta(K_{n-i+1}, u) (1 \le i \le m). \end{aligned}$$

Using Lemma 1, we have

$$\int_{S^{n-1}} \delta(K_1, u) \cdots \delta(K_n, u) dS(u)$$

$$\leq \prod_{i=1}^m \left[\int_{S^{n-1}} \delta(K_1, u) \cdots \delta(K_{n-m}, u) \delta(K_{n-i+1}, u)^m dS(u) \right]^{\frac{1}{m}}$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness, i.e.,

$$D^m(K_1, \ldots, K_n) \leq \prod_{i=0}^{m-1} D(K_1, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}),$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness.

Proof of Theorem 2. For $K_1, \ldots, K_n \in \mathcal{K}^n$, let

$$\begin{aligned} \lambda_i &= m(1 \le i \le m), \\ f_0 &= \delta^p(K_1, u) \cdots \delta^p(K_{n-m}, u) \ (f_0 = 1 \text{ if } m = n), \\ f_i &= \delta^p(K_{n-i+1}, u) (1 \le i \le m). \end{aligned}$$

Using Lemma 1, we have

$$\int_{S^{n-1}} \delta^p(K_1, u) \cdots \delta^p(K_n, u) dS(u)$$

$$\leq \prod_{i=1}^m \left[\int_{S^{n-1}} \delta^p(K_1, u) \cdots \delta^p(K_{n-m}, u) \delta^{pm}(K_{n-i+1}, u) dS(u) \right]^{\frac{1}{m}},$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness.

For p > 0, we get

$$\omega_n \left[\frac{1}{n\omega_n} \int_{S^{n-1}} \delta^p(K_1, u) \cdots \delta^p(K_n, u) dS(u) \right]^{\frac{1}{p}}$$

$$\leq \omega_n \prod_{i=1}^m \left[\frac{1}{n\omega_n} \int_{S^{n-1}} \delta^p(K_1, u) \cdots \delta^p(K_{n-m}, u) \delta^{pm}(K_{n-i+1}, u) dS(u) \right]^{\frac{1}{pm}},$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_n$ are all of similar brightness. For p < 0, inequality above is reversed.

Thus we obtain the conclusion.

Proof of Theorem 3. For $K_1, \ldots, K_n \in \mathcal{K}^n$, from (2.12), (2.19) and Lemma 1, we can get

$$D(K_1, \dots, K_n) = \frac{1}{n} \int_{S^{n-1}} \delta(K_1, u) \cdots \delta(K_n, u) dS(u)$$

$$\leq n^{-\frac{1}{n}} \left[\int_{S^{n-1}} \delta^n(K_1, u) dS(u) \right]^{\frac{1}{n}} \cdots \left[\int_{S^{n-1}} \delta^n(K_n, u) dS(u) \right]^{\frac{1}{n}}$$

$$= n^{-\frac{1}{n}} \left\{ \int_{S^{n-1}} \left[\frac{1}{2} h(\Pi K_1, u) \right]^n dS(u) \right\}^{\frac{1}{n}} \cdots \left\{ \int_{S^{n-1}} \left[\frac{1}{2} h(\Pi K_n, u) \right]^n dS(u) \right\}^{\frac{1}{n}}$$

$$= v^{\frac{1}{n}} (K_1^u) \cdots v^{\frac{1}{n}} (K_n^u),$$

with equality if and only if K_1, \ldots, K_n are all of similar brightness.

Thus we get

$$D^{n}(K_{1},\ldots,K_{n}) \leq v(K_{1}^{u})\cdots v(K_{n}^{u}).$$

For p equal to $-\infty, \ 0$ or $\infty,$ we respectively define the mixed brightness-integral of order p by

$$D_p(K_1,\ldots,K_n) = \lim_{s \to p} D_s(K_1,\ldots,K_n).$$

As a direct consequence of Jensen's inequality [4] we have:

Proposition 1. If $K_1, \ldots, K_n \in \mathcal{K}^n$ and $-\infty \leq p \leq q \leq \infty$, then

 $D_p(K_1,\ldots,K_n) \le D_q(K_1,\ldots,K_n),$

with equality if and only if K_1, \ldots, K_n have constant joint brightness.

Proof of Theorem 4. For $K_1, \ldots, K_n \in \mathcal{K}^n$ and $-\infty \leq p \leq 1$. By combining Theorem 3 with Proposition 1 we obtain

$$D_p^n(K_1, \dots, K_n) \le D_1^n(K_1, \dots, K_n)$$
$$\le v(K_1^u) \cdots v(K_n^u).$$

In view of the equality conditions of Theorem 1 with Proposition 1, equality holds if and only if K_1, K_2, \ldots, K_n are all of similar brightness and have constant joint brightness. Thus we obtain the conclusion.

References

- G. D. Chakerian, Isoperimetric inequalities for the mean width of a convex body, Geometriae Dedicata 1 (1973), no. 3, 356–362.
- [2] _____, The mean volume of boxes and cylinders circumscribed about a convex body, Israel J. Math. 12 (1972), 249–256.
- [3] R. J. Gardner, *Geometric Tomography*, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge, 1995.
- [4] H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.
- [5] F. Lu, Mixed chord-integral of star bodies, preprint, 2007.
- [6] E. Lutwak, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53 (1975), no. 2, 435–439.
- [7] _____, A general Bieberbach inequality, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 493–495.
- [8] _____, Mixed width-integrals of convex bodies, Israel J. Math. 28 (1977), no. 3, 249– 253.
- [9] _____, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91– 105.
- [10] _____, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), no. 2, 901–916.
- [11] R. Schneider, Convex Bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.

 $\rm Ni~Li$

College of Mathematics and Computer Science Chongqing Normal University Chongqing 400047, P. R. China *E-mail address*: lini628@163.com

BAOCHENG ZHU COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE CHONGQING NORMAL UNIVERSITY CHONGQING 400047, P. R. CHINA