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MIXED BRIGHTNESS-INTEGRALS OF CONVEX BODIES

Ni Li and Baocheng Zhu

Abstract. The mixed width-integrals of convex bodies are defined by
E. Lutwak. In this paper, the mixed brightness-integrals of convex bodies
are defined. An inequality is established for the mixed brightness-integrals
analogous to the Fenchel-Aleksandrov inequality for the mixed volumes.
An isoperimetric inequality (involving the mixed brightness-integrals) is
presented which generalizes an inequality recently obtained by Chakerian
and Heil. Strengthened version of this general inequality is obtained by
introducing indexed mixed brightness-integrals.

1. Introduction and main results

The setting for this paper will be the n-dimensional Euclidean space, Rn.
Let Kn denote the set of convex bodies (compact, convex subset with non-
empty interiors) and Kn

o denote the subspace of Kn consisting of all convex
bodies that contain the origin in their interiors. Let Sn

o denote the set of star
bodies about the origin (star-shaped, continuous radial function) in Rn. The
unit n-ball and its surface will be denoted by U and Sn−1, respectively. The
volume of the n-ball, U , will be denoted by ωn.

Lutwak introduced the notion of the mixed width-integrals of convex bodies
in [8, p. 250]: For k ∈ Kn and u ∈ Sn−1, b(K, u) is half the width of K in the
direction u. Mixed width-integrals A(K1,K2, . . . ,Kn) of K1,K2, . . . , Kn ∈ Kn

was defined by

(1.1) A(K1,K2, . . . , Kn) =
1
n

∫

Sn−1
b(K1, u)b(K2, u) · · · b(Kn, u)dS(u).

More in general, for a real number p 6= 0, the mixed width-integrals of order
p, Ap(K1,K2, . . . , Kn), of K1,K2, . . . ,Kn ∈ Kn was also defined by Lutwak [8,
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p. 251],

(1.2) Ap(K1,K2, . . . ,Kn) = ωn

[
1

nωn

∫

Sn−1
b(K1, u)p · · · b(Kn, u)pdS(u)

] 1
p

.

And the properties of the mixed width-integrals of convex bodies were listed,
such as positive, continuous, translation invariant, monotone under set inclu-
sion, and homogeneous of degree one in each variable.

After that, the mixed chord-integrals of star bodies are defined by Fenghong
Lu in [5]. For L ∈ Sn

o and u ∈ Sn−1, let

(1.3) d(L, u) =
1
2
ρ(L, u) +

1
2
ρ(L,−u)

denote half the chord of L in the direction u. The mixed chord-integral,
B(L1, . . . , Ln), of L1, . . . , Ln ∈ Sn

o is defined by

(1.4) B(L1, . . . , Ln) =
1
n

∫

Sn−1
d(L1, u) · · · d(Ln, u)dS(u).

Lutwak established some inequalities for mixed width-integrals in [6, 8]:

Theorem A. If K1, . . . , Kn ∈ Kn and 1 < m ≤ n, then

(1.5) Am(K1, . . . , Kn) ≤
m−1∏

i=0

A(K1, . . . , Kn−m,Kn−i, . . . ,Kn−i),

with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are all of similar width.

Theorem B. If K1, . . . , Kn ∈ Kn, then

(1.6) V (K1) · · ·V (Kn) ≤ An(K1 · · ·Kn),

with equality if and only if K1,K2, . . . ,Kn are n-ball.

Strengthened versions of inequality (1.6) are obtained by introducing indexed
mixed width-integrals.

Theorem C. If K1, . . . , Kn ∈ Kn, p 6= 0 and −1 ≤ p ≤ ∞, then

(1.7) V (K1) · · ·V (Kn) ≤ An
p (K1 · · ·Kn),

with equality if and only if K1,K2, . . . ,Kn are n-ball.

In this paper, the mixed brightness-integrals of convex bodies are defined.
Half the brightness is defined by

(1.8) δ(K, u) =
1
2
h(ΠK, u).

The mixed brightness-integral D(K1, . . . , Kn) of K1, . . . , Kn ∈ Kn is defined
by

(1.9) D(K1, . . . ,Kn) =
1
n

∫

Sn−1
δ(K1, u) · · · δ(Kn, u)dS(u).
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Further, some inequalities for the mixed brightness-integrals analogous to
the Fenchel-Aleksandrov inequality for the mixed volumes are established. And
we obtain strengthened versions of the general inequality established by Chak-
erian. We mainly obtain the following results:

Theorem 1. If K1, . . . , Kn ∈ Kn and 1 < m ≤ n, then

(1.10) Dm(K1, . . . , Kn) ≤
m−1∏

i=0

D(K1, . . . , Kn−m,Kn−i, . . . ,Kn−i),

with equality if and only if Kn−m+1,Kn−m+2, . . . , Kn are all of similar bright-
ness.

A strengthened version of inequality (1.10) is obtained:

Theorem 2. If K1, . . . , Kn ∈ Kn and 1 < m ≤ n, then for p > 0

(1.11) Dm
p (K1, . . . ,Kn) ≤

m−1∏

i=0

Dp(K1, . . . ,Kn−m,Kn−i, . . . , Kn−i),

with equality if and only if Kn−m+1,Kn−m+2, . . . , Kn are all of similar bright-
ness. For p < 0, inequality (1.11) is reversed.

Theorem 1 and Theorem 2 are just analogs of the Fenchel-Aleksandrov in-
equality for the mixed volumes.

For K ∈ Kn, and u ∈ Sn−1, let Ku denote the image of the orthogonal
projection of K onto ξu, the (n−1)-dimensional subspace of Rn that is orthog-
onal to u. v(Ku

1 , . . . ,Ku
n) denote the mixed volume of Ku

1 , . . . ,Ku
n and v(Ku)

denote the volume of Ku.

Theorem 3. If K1, . . . , Kn ∈ Kn, and u ∈ Sn−1, then

(1.12) Dn(K1, . . . ,Kn) ≤ v(Ku
1 ) · · · v(Ku

n),

with equality if and only if K1,K2, . . . ,Kn are all of similar brightness.

A strengthened version of inequality (1.12) is obtained:

Theorem 4. If K1, . . . , Kn ∈ Kn, u ∈ Sn−1 and −∞ ≤ p ≤ 1, then

(1.13) Dn
p (K1, . . . ,Kn) ≤ v(Ku

1 ) · · · v(Ku
n),

with equality if and only if K1,K2, . . . , Kn are all of similar brightness and
have constant joint brightness.

2. Preliminaries

2.1. Support function and radial function

Let h(K, u) denote the support function (restricted to the unit sphere) of
K ∈ Kn; i.e., for u ∈ Sn−1,

(2.1) h(K,u) = max{u · x : x ∈ K},
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where u · x denote the usual inner product of x and u in Rn.
For K1,K2, . . . ,Kn ∈ Kn and λ1, . . . , λn ≥ 0, the Minkowski linear combi-

nation λ1K1 + · · ·+ λnKn ∈ Kn is defined by

(2.2) λ1K1 + · · ·+ λnKn = {λ1x1 + · · ·+ λnxn ∈ Kn : xi ∈ Ki, 1 ≤ i ≤ n}.
It is trivial to verify that

(2.3) h(λ1K1 + · · ·+ λnKn, u) = λ1h(K1, u) + · · ·+ λnh(Kn, u).

The support function h(K,u) is a sublinear function, which satisfies

(2.4) h(K,λu) = λh(K,u), h(K,u + v) 5 h(K,u) + h(K, v)

for λ = 0.
It is very clear from the definition that K ⊂ L if and only if

(2.5) h(K, u) ≤ h(L, u).

A compact convex set K is centered if and only if

(2.6) h(K,u) = h(K,−u).

The group of nonsingular linear transformations is denoted by GL(n). Let
φ ∈ GL(n), the transpose and inverse are denoted by φt and φ−1. Then

(2.7) h(φK, u) = h(K, φtu) = ‖φtu‖h
(

K,
φtu

‖φtu‖
)

for all u ∈ Sn−1.
The radial function ρ(K,u) of the convex body K is

(2.8) ρ(K, u) = sup{λ > 0 : λu ∈ K}, u ∈ Sn−1.

2.2. Brightness and mixed brightness

For convex bodies K1, . . . ,Kn−1 ∈ Kn and a direction u ∈ Sn−1, the mixed
brightness of K1, . . . , Kn−1 in the direction u, σ(K1, . . . ,Kn−1; u), is defined
by

(2.9) σ(K1, . . . ,Kn−1; u) = nV (K1, . . . , Kn−1, 〈u〉),
where V (K1, . . . , Kn−1, 〈u〉) denote the mixed volume of K1, . . . ,Kn−1, 〈u〉 and
〈u〉 denote the closed line segment.

Since h(〈u〉, ū) = 1
2 |u · ū|, we obtain

(2.10) σ(K1, . . . , Kn−1;u) =
1
2

∫

Sn−1
|u · ū|d(K1, . . . ,Kn−1; ū).

For K ∈ Kn, and u ∈ Sn−1, the mixed brightness of K1, . . . , Kn−1 in the
direction u can be written as

(2.11) σ(K1, . . . ,Kn−1; u) = v(Ku
1 , . . . , Ku

n−1),
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If K1 = · · · = Kn−i−1 = K and Kn−i = · · · = Kn−1 = K̄, then the mixed
brightness σ(K1, . . . ,Kn−1; u) is written as σi(K, K̄; u). If i = 0, then σ(K,u)
is called the brightness of K in the direction u. From (2.11) we have

(2.12) σi(K, K̄; u) = u(Ku, K̄u), σ(K, u) = v(Ku).

2.3. Projection and mixed projection bodies

The projection body, ΠK, of the body K ∈ Kn is defined as the convex
figure whose support function is given, for u ∈ Sn−1, by

(2.13) h(ΠK,u) = v(Ku).

From (2.10), (2.12), and (2.13), we can see that the homogeneous extension
of degree 1 of h(ΠK,u) is a convex function and hence ΠK is a convex fig-
ure. From (2.13), it is easy to see that a projection body is always centered
(symmetric about the origin), and if K has interior points, then ΠK will have
interior points as well.

If K1, . . . ,Kn−1 ∈ Kn, then the mixed projection body of K1, . . . , Kn−1 is
denoted by Π(K1, . . . , Kn−1), and defined by

(2.14) h(Π(K1, . . . ,Kn−1), u) = σ(K1, . . . , Kn−1;u).

It is easy to see that the mixed projection body, Π(K1, . . . ,Kn−1), must be
a convex body that is symmetric with respect to the origin from (2.10) and
(2.14).

The following is a list of the basic properties of the mixed projection oper-
ator.

The projection operator is multilinear with respect to Minkowski linear com-
binations; i.e., if K1,K

′
1,K2, . . . ,Kn−1 ∈ Kn and λ, λ′ ≥ 0, then

(2.15)
Π(λK1 + λ′K ′

1, K2, . . . , Kn−1)

= λΠ(K1,K2, . . . ,Kn−1) + λ′Π(K ′
1,K2, . . . ,Kn−1).

If K1, . . . ,Kn−1 ∈ Kn, and φ ∈ GL(n), then

(2.16) Π(φK1, . . . , φKn−1) = | detφ|φ−t(Π(K1, . . . ,Kn−1)).

The mixed projection operator is monotone nondecreasing with respect to
set inclusion (by seeing [10, p. 907]); i.e., if Ki, Li ∈ Kn, and Ki ⊂ Li,
1 ≤ i ≤ n− 1, then

(2.17) Π(K1, . . . ,Kn−1) ⊂ Π(L1, . . . , Ln−1).

From the corresponding properties of the (n−1)-dimensional mixed volumes
and (2.9) or (2.11), it follows that the mixed projection bodies Π(K1, . . . , Kn−1)
is symmetric in its argument, and for x1, . . . , xn ∈ Rn, we have

(2.18) Π(x1 + K1, . . . , xn + Kn) = Π(K1, . . . ,Kn).
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2.4. Mixed volumes

For K1, . . . , Kn ∈ Kn, and u ∈ Sn−1, then the following equation relates
mixed volumes V (K1, . . . , Kn) and mixed area measures S(K1, . . . , Kn−1, u):

(2.19) V (K1, . . . ,Kn) =
1
n

∫

Sn−1
h(Kn, u)dS(K1, . . . , Kn−1, u).

3. Mixed brightness-integrals of convex bodies

3.1. Half the brightness

Definition 1. If K ∈ Kn and u ∈ Sn−1, we let

δ(K, u) =
1
2
h(ΠK, u),

i.e., δ(K, u) denotes half the brightness of K in the direction u. Convex
bodies K1, . . . , Kn are said to have similar brightness if there exist constants
λ1, λ2, . . . , λn > 0 such that λ1δ(K1, u) = · · · = λnδ(Kn, u) for all u ∈ Sn−1;
they are said to have constant joint brightness if the product δ(K1,u) · · · δ(Kn,u)
is constant for all u ∈ Sn−1. For reference see Gardner [3] and schneider [11].

3.2. Mixed brightness-integral

Definition 2. Following Lutwak, we define the mixed brightness-integrals of
convex bodies:

For K1,K2, . . . , Kn ∈ Kn, the mixed brightness-integral

D(K1, . . . ,Kn) =
1
n

∫

Sn−1
δ(K1, u) · · · δ(Kn, u)dS(u).

By this definition, D is a map

D : Kn × · · · × Kn

︸ ︷︷ ︸
n

→ R.

3.3. The properties of mixed brightness-integrals

We list some of its elementary properties.
(1) (Positively homogeneous) If K1, . . . ,Kn ∈ Kn and λ1, . . . , λn > 0, then

D(λ1K1, . . . , λnKn) = λ1 · · ·λnD(K1, . . . , Kn).

(2) (Continuity) The mixed brightness-integrals D(K1, . . . , Kn) is a con-
tinuous function of K1, . . . , Kn−1 ∈ Kn.

(3) (Monotonicity for set inclusion) If Ki, Li ∈ Kn, Ki ⊂ Li and 1 ≤ i ≤ n,
then

D(K1, . . . , Kn) ≤ D(L1, . . . , Ln),

with equality if and only if Ki = Li for 1 ≤ i ≤ n.
(4) (Nonnegativity) For K1, . . . ,Kn ∈ Kn, D(K1, . . . ,Kn) ≥ 0.
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(5) (Invariance under individual translation) If x ∈ Rn, then

D(K1 + x,K2, . . . , Kn) = D(K1, . . . , Kn).

(6) (Invariance under linear transformation) If K1, . . . ,Kn ∈ Kn, and φ ∈
GL(n), then

D(φK1, . . . , φKn) = D(K1, . . . , Kn).

Proof. (1) From (2.3) and (2.15), we can get

δ(λiKi, u) =
1
2
h(ΠλiKi, u) =

1
2
h(λiΠKi, u) =

1
2
λih(ΠKi, u) = λiδ(Ki, u)

for 1 ≤ i ≤ n. Then, from the definition, we can obtain,

D(λ1K1, . . . , λnKn) =
1
n

∫

Sn−1
δ(λ1K1, u) · · · δ(λnKn, u)dS(u)

= λ1 · · ·λn
1
n

∫

Sn−1
δ(K1, u) · · · δ(Kn, u)dS(u)

= λ1 · · ·λnD(K1, . . . , Kn).

(2) The polar coordinate formula for mixed volume of bodies K1, . . . , Kn in
Rn is

Ṽ (K1, . . . , Kn) =
1
n

∫

Sn−1
ρ(K1, u) · · · ρ(Kn, u)d(u).

From the continuity of the mixed volume and Minikowski addition, we can
see the support function is continuous. Hence, the mixed brightness-integral is
a continuous function.

(3) For Ki, Li ∈ Kn, Ki ⊂ Li and 1 ≤ i ≤ n, from (2.17) and (2.5), we have

ΠKi ⊂ ΠLi,

then
h(ΠKi, u) ≤ h(ΠLi, u),

hence,
D(K1, . . . , Kn) ≤ D(L1, . . . , Ln),

with equality if and only if Ki = Li for 1 ≤ i ≤ n.
(4) The mixed projection body, Π(K1, . . . ,Kn), is a convex body that is

symmetric with respect to the origin, then h(ΠKi, u) > 0 for 1 ≤ i ≤ n. From
the definition,

D(K1, . . . ,Kn) > 0.

In particular, if any Ki is a single point, then ΠKi is the origin. In this case,
h(ΠKi) = 0), then

D(K1, . . . ,Kn) = 0.

Hence,
D(K1, . . . ,Kn) ≥ 0.
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(5) From (2.18), we have

δ(K1 + x, u) =
1
2
h(Π(K1 + x), u) =

1
2
h(Π(K1), u) = δ(K1, u),

hence,
D(K1 + x,K2, . . . , Kn) = D(K1, . . . , Kn).

(6) From (2.16) and (2.7), we can get

δ(φK, u) =
1
2
h(Π(φK), u)

=
1
2
h(| detφ|φ−t(ΠK), u)

=
1
2
|det φ|h(φ−t(ΠK), u)

=
1
2
|det φ|h(ΠK, φ−1u)

=
1
2
|det φ|‖φ−1u‖h

(
ΠK,

φ−1u

‖φ−1u‖
)

=
1
2
h(ΠK, u)

= δ(φK, u′),

where u′ ∈ Sn−1.
Hence,

D(φK1, . . . , φKn) = D(K1, . . . , Kn). ¤

3.4. Mixed brightness-integral of order p

Just as the width-integral Bi(K) [6] of K ∈ Kn, are defined to be the special
mixed width-integral

A(K, . . . ,K︸ ︷︷ ︸
n−i

, U, . . . , U︸ ︷︷ ︸
i

),

the brightness-integral Ci(K) of K ∈ Kn, can be defined as the special mixed
brightness-integral

D(K, . . . , K︸ ︷︷ ︸
n−i

, U, . . . , U︸ ︷︷ ︸
i

).

Now we generalize the notion of the mixed brightness-integral of convex
bodies: For K1, . . . ,Kn ∈ Kn, and a real number p 6= 0, the mixed brightness-
integral of order p, Dp(K1, . . . , Kn) of K1, . . . , Kn is defined by

Dp(K1, K2, . . . , Kn) = ωn

[
1

nωn

∫

Sn−1
δ(K1, u)p · · · δ(Kn, u)pdS(u)

] 1
p

.

Specially p = 1, this definition is just Definition 1.
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4. Inequalities for the mixed-brightness integrals

In order to prove the conclusions in the introduction, we require the following
simply extension of Hölder’ s inequality.

Lemma 1. If f0, f1, . . . , fm are (strictly) positive continuous functions defined
on Sn−1 and λ1, . . . , λm are positive constants the sum of whose reciprocals is
unity, then

∫

Sn−1
f0(u)f1(u) · · · fm(u)dS(u) ≤

m∏

i=1

[∫

Sn−1
f0(u)fλi

i (u)dS(u)
] 1

λi

,

with equality if and only if there exist positive constants α1, α2, . . . , αm such
that α1f

λ1
1 (u) = · · · = αmfλm

m (u) for all u ∈ Sn−1.

Proof of Theorem 1. For K1, . . . , Kn ∈ Kn, let

λi = m(1 ≤ i ≤ m),
f0 = δ(K1, u) · · · δ(Kn−m, u) (f0 = 1 if m = n),
fi = δ(Kn−i+1, u)(1 ≤ i ≤ m).

Using Lemma 1, we have∫

Sn−1
δ(K1, u) · · · δ(Kn, u)dS(u)

≤
m∏

i=1

[∫

Sn−1
δ(K1, u) · · · δ(Kn−m, u)δ(Kn−i+1, u)mdS(u)

] 1
m

,

with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are all of similar bright-
ness, i.e.,

Dm(K1, . . . , Kn) ≤
m−1∏

i=0

D(K1, . . . , Kn−m,Kn−i, . . . , Kn−i),

with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are all of similar bright-
ness. ¤

Proof of Theorem 2. For K1, . . . , Kn ∈ Kn, let

λi = m(1 ≤ i ≤ m),
f0 = δp(K1, u) · · · δp(Kn−m, u) (f0 = 1 if m = n),
fi = δp(Kn−i+1, u)(1 ≤ i ≤ m).

Using Lemma 1, we have∫

Sn−1
δp(K1, u) · · · δp(Kn, u)dS(u)

≤
m∏

i=1

[∫

Sn−1
δp(K1, u) · · · δp(Kn−m, u)δpm(Kn−i+1, u)dS(u)

] 1
m

,
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with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are all of similar bright-
ness.

For p > 0, we get

ωn

[
1

nωn

∫

Sn−1
δp(K1, u) · · · δp(Kn, u)dS(u)

] 1
p

≤ ωn

m∏

i=1

[
1

nωn

∫

Sn−1
δp(K1, u) · · · δp(Kn−m, u)δpm(Kn−i+1, u)dS(u)

] 1
pm

,

with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are all of similar bright-
ness. For p < 0, inequality above is reversed.

Thus we obtain the conclusion. ¤

Proof of Theorem 3. For K1, . . . , Kn ∈ Kn, from (2.12), (2.19) and Lemma 1,
we can get

D(K1, . . . , Kn)

=
1
n

∫

Sn−1
δ(K1, u) · · · δ(Kn, u)dS(u)

≤ n−
1
n

[∫

Sn−1
δn(K1, u)dS(u)

] 1
n

· · ·
[∫

Sn−1
δn(Kn, u)dS(u)

] 1
n

= n−
1
n

{∫

Sn−1

[
1
2
h(ΠK1, u)

]n

dS(u)
} 1

n

· · ·
{∫

Sn−1

[
1
2
h(ΠKn, u)

]n

dS(u)
} 1

n

= v
1
n (Ku

1 ) · · · v 1
n (Ku

n),

with equality if and only if K1, . . . ,Kn are all of similar brightness.
Thus we get

Dn(K1, . . . ,Kn) ≤ v(Ku
1 ) · · · v(Ku

n). ¤

For p equal to −∞, 0 or ∞, we respectively define the mixed brightness-
integral of order p by

Dp(K1, . . . , Kn) = lim
s→p

Ds(K1, . . . ,Kn).

As a direct consequence of Jensen’s inequality [4] we have:

Proposition 1. If K1, . . . ,Kn ∈ Kn and −∞ ≤ p ≤ q ≤ ∞, then

Dp(K1, . . . , Kn) ≤ Dq(K1, . . . , Kn),

with equality if and only if K1, . . . , Kn have constant joint brightness.

Proof of Theorem 4. For K1, . . . ,Kn ∈ Kn and −∞ ≤ p ≤ 1. By combining
Theorem 3 with Proposition 1 we obtain

Dn
p (K1, . . . ,Kn) ≤ Dn

1 (K1, . . . ,Kn)

≤ v(Ku
1 ) · · · v(Ku

n).
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In view of the equality conditions of Theorem 1 with Proposition 1, equal-
ity holds if and only if K1,K2, . . . ,Kn are all of similar brightness and have
constant joint brightness. Thus we obtain the conclusion. ¤
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