# MIXED BRIGHTNESS-INTEGRALS OF CONVEX BODIES 

Ni Li and Baocheng Zhu


#### Abstract

The mixed width-integrals of convex bodies are defined by E. Lutwak. In this paper, the mixed brightness-integrals of convex bodies are defined. An inequality is established for the mixed brightness-integrals analogous to the Fenchel-Aleksandrov inequality for the mixed volumes. An isoperimetric inequality (involving the mixed brightness-integrals) is presented which generalizes an inequality recently obtained by Chakerian and Heil. Strengthened version of this general inequality is obtained by introducing indexed mixed brightness-integrals.


## 1. Introduction and main results

The setting for this paper will be the $n$-dimensional Euclidean space, $\mathbb{R}^{n}$. Let $\mathcal{K}^{n}$ denote the set of convex bodies (compact, convex subset with nonempty interiors) and $\mathcal{K}_{o}^{n}$ denote the subspace of $\mathcal{K}^{n}$ consisting of all convex bodies that contain the origin in their interiors. Let $\mathcal{S}_{o}^{n}$ denote the set of star bodies about the origin (star-shaped, continuous radial function) in $\mathbb{R}^{n}$. The unit $n$-ball and its surface will be denoted by $U$ and $S^{n-1}$, respectively. The volume of the $n$-ball, $U$, will be denoted by $\omega_{n}$.

Lutwak introduced the notion of the mixed width-integrals of convex bodies in [8, p. 250]: For $k \in \mathcal{K}^{n}$ and $u \in S^{n-1}, b(K, u)$ is half the width of $K$ in the direction $u$. Mixed width-integrals $A\left(K_{1}, K_{2}, \ldots, K_{n}\right)$ of $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ was defined by

$$
\begin{equation*}
A\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} b\left(K_{1}, u\right) b\left(K_{2}, u\right) \cdots b\left(K_{n}, u\right) d S(u) \tag{1.1}
\end{equation*}
$$

More in general, for a real number $p \neq 0$, the mixed width-integrals of order $p, A_{p}\left(K_{1}, K_{2}, \ldots, K_{n}\right)$, of $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ was also defined by Lutwak [8,

[^0]p. 251],
\[

$$
\begin{equation*}
A_{p}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\omega_{n}\left[\frac{1}{n \omega_{n}} \int_{S^{n-1}} b\left(K_{1}, u\right)^{p} \cdots b\left(K_{n}, u\right)^{p} d S(u)\right]^{\frac{1}{p}} \tag{1.2}
\end{equation*}
$$

\]

And the properties of the mixed width-integrals of convex bodies were listed, such as positive, continuous, translation invariant, monotone under set inclusion, and homogeneous of degree one in each variable.

After that, the mixed chord-integrals of star bodies are defined by Fenghong Lu in [5]. For $L \in \mathcal{S}_{o}^{n}$ and $u \in S^{n-1}$, let

$$
\begin{equation*}
d(L, u)=\frac{1}{2} \rho(L, u)+\frac{1}{2} \rho(L,-u) \tag{1.3}
\end{equation*}
$$

denote half the chord of $L$ in the direction $u$. The mixed chord-integral, $B\left(L_{1}, \ldots, L_{n}\right)$, of $L_{1}, \ldots, L_{n} \in \mathcal{S}_{o}^{n}$ is defined by

$$
\begin{equation*}
B\left(L_{1}, \ldots, L_{n}\right)=\frac{1}{n} \int_{S^{n-1}} d\left(L_{1}, u\right) \cdots d\left(L_{n}, u\right) d S(u) . \tag{1.4}
\end{equation*}
$$

Lutwak established some inequalities for mixed width-integrals in $[6,8]$ :
Theorem A. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $1<m \leq n$, then

$$
\begin{equation*}
A^{m}\left(K_{1}, \ldots, K_{n}\right) \leq \prod_{i=0}^{m-1} A\left(K_{1}, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}\right) \tag{1.5}
\end{equation*}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar width.
Theorem B. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, then

$$
\begin{equation*}
V\left(K_{1}\right) \cdots V\left(K_{n}\right) \leq A^{n}\left(K_{1} \cdots K_{n}\right) \tag{1.6}
\end{equation*}
$$

with equality if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are $n$-ball.
Strengthened versions of inequality (1.6) are obtained by introducing indexed mixed width-integrals.

Theorem C. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}, p \neq 0$ and $-1 \leq p \leq \infty$, then

$$
\begin{equation*}
V\left(K_{1}\right) \cdots V\left(K_{n}\right) \leq A_{p}^{n}\left(K_{1} \cdots K_{n}\right) \tag{1.7}
\end{equation*}
$$

with equality if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are $n$-ball.
In this paper, the mixed brightness-integrals of convex bodies are defined. Half the brightness is defined by

$$
\begin{equation*}
\delta(K, u)=\frac{1}{2} h(\Pi K, u) . \tag{1.8}
\end{equation*}
$$

The mixed brightness-integral $D\left(K_{1}, \ldots, K_{n}\right)$ of $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ is defined by

$$
\begin{equation*}
D\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u) . \tag{1.9}
\end{equation*}
$$

Further, some inequalities for the mixed brightness-integrals analogous to the Fenchel-Aleksandrov inequality for the mixed volumes are established. And we obtain strengthened versions of the general inequality established by Chakerian. We mainly obtain the following results:

Theorem 1. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $1<m \leq n$, then

$$
\begin{equation*}
D^{m}\left(K_{1}, \ldots, K_{n}\right) \leq \prod_{i=0}^{m-1} D\left(K_{1}, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}\right) \tag{1.10}
\end{equation*}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness.

A strengthened version of inequality (1.10) is obtained:
Theorem 2. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $1<m \leq n$, then for $p>0$

$$
\begin{equation*}
D_{p}^{m}\left(K_{1}, \ldots, K_{n}\right) \leq \prod_{i=0}^{m-1} D_{p}\left(K_{1}, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}\right), \tag{1.11}
\end{equation*}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness. For $p<0$, inequality (1.11) is reversed.

Theorem 1 and Theorem 2 are just analogs of the Fenchel-Aleksandrov inequality for the mixed volumes.

For $K \in \mathcal{K}^{n}$, and $u \in S^{n-1}$, let $K^{u}$ denote the image of the orthogonal projection of $K$ onto $\xi_{u}$, the $(n-1)$-dimensional subspace of $\mathbb{R}^{n}$ that is orthogonal to $u . v\left(K_{1}^{u}, \ldots, K_{n}^{u}\right)$ denote the mixed volume of $K_{1}^{u}, \ldots, K_{n}^{u}$ and $v\left(K^{u}\right)$ denote the volume of $K^{u}$.

Theorem 3. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, and $u \in S^{n-1}$, then

$$
\begin{equation*}
D^{n}\left(K_{1}, \ldots, K_{n}\right) \leq v\left(K_{1}^{u}\right) \cdots v\left(K_{n}^{u}\right), \tag{1.12}
\end{equation*}
$$

with equality if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are all of similar brightness.
A strengthened version of inequality (1.12) is obtained:
Theorem 4. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}, u \in S^{n-1}$ and $-\infty \leq p \leq 1$, then

$$
\begin{equation*}
D_{p}^{n}\left(K_{1}, \ldots, K_{n}\right) \leq v\left(K_{1}^{u}\right) \cdots v\left(K_{n}^{u}\right), \tag{1.13}
\end{equation*}
$$

with equality if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are all of similar brightness and have constant joint brightness.

## 2. Preliminaries

### 2.1. Support function and radial function

Let $h(K, u)$ denote the support function (restricted to the unit sphere) of $K \in \mathcal{K}^{n}$; i.e., for $u \in S^{n-1}$,

$$
\begin{equation*}
h(K, u)=\max \{u \cdot x: x \in K\}, \tag{2.1}
\end{equation*}
$$

where $u \cdot x$ denote the usual inner product of $x$ and $u$ in $\mathbb{R}^{n}$.
For $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $\lambda_{1}, \ldots, \lambda_{n} \geq 0$, the Minkowski linear combination $\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n} \in \mathcal{K}^{n}$ is defined by
(2.2) $\quad \lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n} \in \mathcal{K}^{n}: x_{i} \in K_{i}, 1 \leq i \leq n\right\}$.

It is trivial to verify that

$$
\begin{equation*}
h\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}, u\right)=\lambda_{1} h\left(K_{1}, u\right)+\cdots+\lambda_{n} h\left(K_{n}, u\right) . \tag{2.3}
\end{equation*}
$$

The support function $h(K, u)$ is a sublinear function, which satisfies

$$
\begin{equation*}
h(K, \lambda u)=\lambda h(K, u), h(K, u+v) \leqq h(K, u)+h(K, v) \tag{2.4}
\end{equation*}
$$

for $\lambda \geqq 0$.
It is very clear from the definition that $K \subset L$ if and only if

$$
\begin{equation*}
h(K, u) \leq h(L, u) . \tag{2.5}
\end{equation*}
$$

A compact convex set $K$ is centered if and only if

$$
\begin{equation*}
h(K, u)=h(K,-u) . \tag{2.6}
\end{equation*}
$$

The group of nonsingular linear transformations is denoted by $G L(n)$. Let $\phi \in G L(n)$, the transpose and inverse are denoted by $\phi^{t}$ and $\phi^{-1}$. Then

$$
\begin{equation*}
h(\phi K, u)=h\left(K, \phi^{t} u\right)=\left\|\phi^{t} u\right\| h\left(K, \frac{\phi^{t} u}{\left\|\phi^{t} u\right\|}\right) \tag{2.7}
\end{equation*}
$$

for all $u \in S^{n-1}$.
The radial function $\rho(K, u)$ of the convex body K is

$$
\begin{equation*}
\rho(K, u)=\sup \{\lambda>0: \lambda u \in K\}, u \in S^{n-1} \tag{2.8}
\end{equation*}
$$

### 2.2. Brightness and mixed brightness

For convex bodies $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$ and a direction $u \in S^{n-1}$, the mixed brightness of $K_{1}, \ldots, K_{n-1}$ in the direction $u, \sigma\left(K_{1}, \ldots, K_{n-1} ; u\right)$, is defined by

$$
\begin{equation*}
\sigma\left(K_{1}, \ldots, K_{n-1} ; u\right)=n V\left(K_{1}, \ldots, K_{n-1},\langle u\rangle\right) \tag{2.9}
\end{equation*}
$$

where $V\left(K_{1}, \ldots, K_{n-1},\langle u\rangle\right)$ denote the mixed volume of $K_{1}, \ldots, K_{n-1},\langle u\rangle$ and $\langle u\rangle$ denote the closed line segment.

Since $h(\langle u\rangle, \bar{u})=\frac{1}{2}|u \cdot \bar{u}|$, we obtain

$$
\begin{equation*}
\sigma\left(K_{1}, \ldots, K_{n-1} ; u\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot \bar{u}| d\left(K_{1}, \ldots, K_{n-1} ; \bar{u}\right) . \tag{2.10}
\end{equation*}
$$

For $K \in \mathcal{K}^{n}$, and $u \in S^{n-1}$, the mixed brightness of $K_{1}, \ldots, K_{n-1}$ in the direction $u$ can be written as

$$
\begin{equation*}
\sigma\left(K_{1}, \ldots, K_{n-1} ; u\right)=v\left(K_{1}^{u}, \ldots, K_{n-1}^{u}\right) \tag{2.11}
\end{equation*}
$$

If $K_{1}=\cdots=K_{n-i-1}=K$ and $K_{n-i}=\cdots=K_{n-1}=\bar{K}$, then the mixed brightness $\sigma\left(K_{1}, \ldots, K_{n-1} ; u\right)$ is written as $\sigma_{i}(K, \bar{K} ; u)$. If $i=0$, then $\sigma(K, u)$ is called the brightness of $K$ in the direction $u$. From (2.11) we have

$$
\begin{equation*}
\sigma_{i}(K, \bar{K} ; u)=u\left(K^{u}, \bar{K}^{u}\right), \sigma(K, u)=v\left(K^{u}\right) \tag{2.12}
\end{equation*}
$$

### 2.3. Projection and mixed projection bodies

The projection body, $\Pi K$, of the body $K \in \mathcal{K}^{n}$ is defined as the convex figure whose support function is given, for $u \in S^{n-1}$, by

$$
\begin{equation*}
h(\Pi K, u)=v\left(K^{u}\right) \tag{2.13}
\end{equation*}
$$

From (2.10), (2.12), and (2.13), we can see that the homogeneous extension of degree 1 of $h(\Pi K, u)$ is a convex function and hence $\Pi K$ is a convex figure. From (2.13), it is easy to see that a projection body is always centered (symmetric about the origin), and if $K$ has interior points, then $\Pi K$ will have interior points as well.

If $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$, then the mixed projection body of $K_{1}, \ldots, K_{n-1}$ is denoted by $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$, and defined by

$$
\begin{equation*}
h\left(\Pi\left(K_{1}, \ldots, K_{n-1}\right), u\right)=\sigma\left(K_{1}, \ldots, K_{n-1} ; u\right) . \tag{2.14}
\end{equation*}
$$

It is easy to see that the mixed projection body, $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$, must be a convex body that is symmetric with respect to the origin from (2.10) and (2.14).

The following is a list of the basic properties of the mixed projection operator.

The projection operator is multilinear with respect to Minkowski linear combinations; i.e., if $K_{1}, K_{1}^{\prime}, K_{2}, \ldots, K_{n-1} \in \mathcal{K}^{n}$ and $\lambda, \lambda^{\prime} \geq 0$, then

$$
\begin{align*}
& \Pi\left(\lambda K_{1}+\lambda^{\prime} K_{1}^{\prime}, K_{2}, \ldots, K_{n-1}\right) \\
= & \lambda \Pi\left(K_{1}, K_{2}, \ldots, K_{n-1}\right)+\lambda^{\prime} \Pi\left(K_{1}^{\prime}, K_{2}, \ldots, K_{n-1}\right) . \tag{2.15}
\end{align*}
$$

If $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$, and $\phi \in G L(n)$, then

$$
\begin{equation*}
\Pi\left(\phi K_{1}, \ldots, \phi K_{n-1}\right)=|\operatorname{det} \phi| \phi^{-t}\left(\Pi\left(K_{1}, \ldots, K_{n-1}\right)\right) . \tag{2.16}
\end{equation*}
$$

The mixed projection operator is monotone nondecreasing with respect to set inclusion (by seeing [10, p. 907]); i.e., if $K_{i}, L_{i} \in \mathcal{K}^{n}$, and $K_{i} \subset L_{i}$, $1 \leq i \leq n-1$, then

$$
\begin{equation*}
\Pi\left(K_{1}, \ldots, K_{n-1}\right) \subset \Pi\left(L_{1}, \ldots, L_{n-1}\right) \tag{2.17}
\end{equation*}
$$

From the corresponding properties of the $(n-1)$-dimensional mixed volumes and (2.9) or (2.11), it follows that the mixed projection bodies $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$ is symmetric in its argument, and for $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
\Pi\left(x_{1}+K_{1}, \ldots, x_{n}+K_{n}\right)=\Pi\left(K_{1}, \ldots, K_{n}\right) . \tag{2.18}
\end{equation*}
$$

### 2.4. Mixed volumes

For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, and $u \in S^{n-1}$, then the following equation relates mixed volumes $V\left(K_{1}, \ldots, K_{n}\right)$ and mixed area measures $S\left(K_{1}, \ldots, K_{n-1}, u\right)$ :

$$
\begin{equation*}
V\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} h\left(K_{n}, u\right) d S\left(K_{1}, \ldots, K_{n-1}, u\right) . \tag{2.19}
\end{equation*}
$$

## 3. Mixed brightness-integrals of convex bodies

### 3.1. Half the brightness

Definition 1. If $K \in \mathcal{K}^{n}$ and $u \in S^{n-1}$, we let

$$
\delta(K, u)=\frac{1}{2} h(\Pi K, u)
$$

i.e., $\delta(K, u)$ denotes half the brightness of $K$ in the direction $u$. Convex bodies $K_{1}, \ldots, K_{n}$ are said to have similar brightness if there exist constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ such that $\lambda_{1} \delta\left(K_{1}, u\right)=\cdots=\lambda_{n} \delta\left(K_{n}, u\right)$ for all $u \in S^{n-1}$; they are said to have constant joint brightness if the product $\delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right)$ is constant for all $u \in S^{n-1}$. For reference see Gardner [3] and schneider [11].

### 3.2. Mixed brightness-integral

Definition 2. Following Lutwak, we define the mixed brightness-integrals of convex bodies:

For $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, the mixed brightness-integral

$$
D\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u)
$$

By this definition, $D$ is a map

$$
D: \underbrace{\mathcal{K}^{n} \times \cdots \times \mathcal{K}^{n}}_{n} \rightarrow \mathbb{R}
$$

### 3.3. The properties of mixed brightness-integrals

We list some of its elementary properties.
(1) (Positively homogeneous) If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $\lambda_{1}, \ldots, \lambda_{n}>0$, then

$$
D\left(\lambda_{1} K_{1}, \ldots, \lambda_{n} K_{n}\right)=\lambda_{1} \cdots \lambda_{n} D\left(K_{1}, \ldots, K_{n}\right)
$$

(2) (Continuity) The mixed brightness-integrals $D\left(K_{1}, \ldots, K_{n}\right)$ is a continuous function of $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$.
(3) (Monotonicity for set inclusion) If $K_{i}, L_{i} \in \mathcal{K}^{n}, K_{i} \subset L_{i}$ and $1 \leq i \leq n$, then

$$
D\left(K_{1}, \ldots, K_{n}\right) \leq D\left(L_{1}, \ldots, L_{n}\right)
$$

with equality if and only if $K_{i}=L_{i}$ for $1 \leq i \leq n$.
(4) (Nonnegativity) For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}, D\left(K_{1}, \ldots, K_{n}\right) \geq 0$.
(5) (Invariance under individual translation) If $x \in \mathbb{R}^{n}$, then

$$
D\left(K_{1}+x, K_{2}, \ldots, K_{n}\right)=D\left(K_{1}, \ldots, K_{n}\right)
$$

(6) (Invariance under linear transformation) If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, and $\phi \in$ $G L(n)$, then

$$
D\left(\phi K_{1}, \ldots, \phi K_{n}\right)=D\left(K_{1}, \ldots, K_{n}\right)
$$

Proof. (1) From (2.3) and (2.15), we can get

$$
\delta\left(\lambda_{i} K_{i}, u\right)=\frac{1}{2} h\left(\Pi \lambda_{i} K_{i}, u\right)=\frac{1}{2} h\left(\lambda_{i} \Pi K_{i}, u\right)=\frac{1}{2} \lambda_{i} h\left(\Pi K_{i}, u\right)=\lambda_{i} \delta\left(K_{i}, u\right)
$$

for $1 \leq i \leq n$. Then, from the definition, we can obtain,

$$
\begin{aligned}
D\left(\lambda_{1} K_{1}, \ldots, \lambda_{n} K_{n}\right) & =\frac{1}{n} \int_{S^{n-1}} \delta\left(\lambda_{1} K_{1}, u\right) \cdots \delta\left(\lambda_{n} K_{n}, u\right) d S(u) \\
& =\lambda_{1} \cdots \lambda_{n} \frac{1}{n} \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u) \\
& =\lambda_{1} \cdots \lambda_{n} D\left(K_{1}, \ldots, K_{n}\right)
\end{aligned}
$$

(2) The polar coordinate formula for mixed volume of bodies $K_{1}, \ldots, K_{n}$ in $\mathbb{R}^{n}$ is

$$
\tilde{V}\left(K_{1}, \ldots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \rho\left(K_{1}, u\right) \cdots \rho\left(K_{n}, u\right) d(u) .
$$

From the continuity of the mixed volume and Minikowski addition, we can see the support function is continuous. Hence, the mixed brightness-integral is a continuous function.
(3) For $K_{i}, L_{i} \in \mathcal{K}^{n}, K_{i} \subset L_{i}$ and $1 \leq i \leq n$, from (2.17) and (2.5), we have

$$
\Pi K_{i} \subset \Pi L_{i}
$$

then

$$
h\left(\Pi K_{i}, u\right) \leq h\left(\Pi L_{i}, u\right)
$$

hence,

$$
D\left(K_{1}, \ldots, K_{n}\right) \leq D\left(L_{1}, \ldots, L_{n}\right)
$$

with equality if and only if $K_{i}=L_{i}$ for $1 \leq i \leq n$.
(4) The mixed projection body, $\Pi\left(K_{1}, \ldots, K_{n}\right)$, is a convex body that is symmetric with respect to the origin, then $h\left(\Pi K_{i}, u\right)>0$ for $1 \leq i \leq n$. From the definition,

$$
D\left(K_{1}, \ldots, K_{n}\right)>0
$$

In particular, if any $K_{i}$ is a single point, then $\Pi K_{i}$ is the origin. In this case, $\left.h\left(\Pi K_{i}\right)=0\right)$, then

$$
D\left(K_{1}, \ldots, K_{n}\right)=0
$$

Hence,

$$
D\left(K_{1}, \ldots, K_{n}\right) \geq 0
$$

(5) From (2.18), we have

$$
\delta\left(K_{1}+x, u\right)=\frac{1}{2} h\left(\Pi\left(K_{1}+x\right), u\right)=\frac{1}{2} h\left(\Pi\left(K_{1}\right), u\right)=\delta\left(K_{1}, u\right)
$$

hence,

$$
D\left(K_{1}+x, K_{2}, \ldots, K_{n}\right)=D\left(K_{1}, \ldots, K_{n}\right) .
$$

(6) From (2.16) and (2.7), we can get

$$
\begin{aligned}
\delta(\phi K, u) & =\frac{1}{2} h(\Pi(\phi K), u) \\
& =\frac{1}{2} h\left(|\operatorname{det} \phi| \phi^{-t}(\Pi K), u\right) \\
& =\frac{1}{2}|\operatorname{det} \phi| h\left(\phi^{-t}(\Pi K), u\right) \\
& =\frac{1}{2}|\operatorname{det} \phi| h\left(\Pi K, \phi^{-1} u\right) \\
& =\frac{1}{2}|\operatorname{det} \phi|\left\|\phi^{-1} u\right\| h\left(\Pi K, \frac{\phi^{-1} u}{\left\|\phi^{-1} u\right\|}\right) \\
& =\frac{1}{2} h(\Pi K, u) \\
& =\delta\left(\phi K, u^{\prime}\right)
\end{aligned}
$$

where $u^{\prime} \in S^{n-1}$.
Hence,

$$
D\left(\phi K_{1}, \ldots, \phi K_{n}\right)=D\left(K_{1}, \ldots, K_{n}\right)
$$

### 3.4. Mixed brightness-integral of order $\boldsymbol{p}$

Just as the width-integral $B_{i}(K)[6]$ of $K \in \mathcal{K}^{n}$, are defined to be the special mixed width-integral

$$
A(\underbrace{K, \ldots, K}_{n-i}, \underbrace{U, \ldots, U}_{i}),
$$

the brightness-integral $C_{i}(K)$ of $K \in \mathcal{K}^{n}$, can be defined as the special mixed brightness-integral

$$
D(\underbrace{K, \ldots, K}_{n-i}, \underbrace{U, \ldots, U}_{i}) .
$$

Now we generalize the notion of the mixed brightness-integral of convex bodies: For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, and a real number $p \neq 0$, the mixed brightnessintegral of order $p, D_{p}\left(K_{1}, \ldots, K_{n}\right)$ of $K_{1}, \ldots, K_{n}$ is defined by

$$
D_{p}\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\omega_{n}\left[\frac{1}{n \omega_{n}} \int_{S^{n-1}} \delta\left(K_{1}, u\right)^{p} \cdots \delta\left(K_{n}, u\right)^{p} d S(u)\right]^{\frac{1}{p}}
$$

Specially $p=1$, this definition is just Definition 1.

## 4. Inequalities for the mixed-brightness integrals

In order to prove the conclusions in the introduction, we require the following simply extension of Hölder's inequality.

Lemma 1. If $f_{0}, f_{1}, \ldots, f_{m}$ are (strictly) positive continuous functions defined on $S^{n-1}$ and $\lambda_{1}, \ldots, \lambda_{m}$ are positive constants the sum of whose reciprocals is unity, then

$$
\int_{S^{n-1}} f_{0}(u) f_{1}(u) \cdots f_{m}(u) d S(u) \leq \prod_{i=1}^{m}\left[\int_{S^{n-1}} f_{0}(u) f_{i}^{\lambda_{i}}(u) d S(u)\right]^{\frac{1}{\lambda_{i}}}
$$

with equality if and only if there exist positive constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that $\alpha_{1} f_{1}^{\lambda_{1}}(u)=\cdots=\alpha_{m} f_{m}^{\lambda_{m}}(u)$ for all $u \in S^{n-1}$.

Proof of Theorem 1. For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, let

$$
\begin{aligned}
\lambda_{i} & =m(1 \leq i \leq m) \\
f_{0} & =\delta\left(K_{1}, u\right) \cdots \delta\left(K_{n-m}, u\right)\left(f_{0}=1 \text { if } m=n\right), \\
f_{i} & =\delta\left(K_{n-i+1}, u\right)(1 \leq i \leq m) .
\end{aligned}
$$

Using Lemma 1, we have

$$
\begin{aligned}
& \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u) \\
\leq & \prod_{i=1}^{m}\left[\int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n-m}, u\right) \delta\left(K_{n-i+1}, u\right)^{m} d S(u)\right]^{\frac{1}{m}}
\end{aligned}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness, i.e.,

$$
D^{m}\left(K_{1}, \ldots, K_{n}\right) \leq \prod_{i=0}^{m-1} D\left(K_{1}, \ldots, K_{n-m}, K_{n-i}, \ldots, K_{n-i}\right)
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness.

Proof of Theorem 2. For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, let

$$
\begin{aligned}
\lambda_{i} & =m(1 \leq i \leq m), \\
f_{0} & =\delta^{p}\left(K_{1}, u\right) \cdots \delta^{p}\left(K_{n-m}, u\right)\left(f_{0}=1 \text { if } m=n\right), \\
f_{i} & =\delta^{p}\left(K_{n-i+1}, u\right)(1 \leq i \leq m) .
\end{aligned}
$$

Using Lemma 1, we have

$$
\begin{aligned}
& \int_{S^{n-1}} \delta^{p}\left(K_{1}, u\right) \cdots \delta^{p}\left(K_{n}, u\right) d S(u) \\
\leq & \prod_{i=1}^{m}\left[\int_{S^{n-1}} \delta^{p}\left(K_{1}, u\right) \cdots \delta^{p}\left(K_{n-m}, u\right) \delta^{p m}\left(K_{n-i+1}, u\right) d S(u)\right]^{\frac{1}{m}}
\end{aligned}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness.

For $p>0$, we get

$$
\begin{aligned}
& \omega_{n}\left[\frac{1}{n \omega_{n}} \int_{S^{n-1}} \delta^{p}\left(K_{1}, u\right) \cdots \delta^{p}\left(K_{n}, u\right) d S(u)\right]^{\frac{1}{p}} \\
\leq & \omega_{n} \prod_{i=1}^{m}\left[\frac{1}{n \omega_{n}} \int_{S^{n-1}} \delta^{p}\left(K_{1}, u\right) \cdots \delta^{p}\left(K_{n-m}, u\right) \delta^{p m}\left(K_{n-i+1}, u\right) d S(u)\right]^{\frac{1}{p m}},
\end{aligned}
$$

with equality if and only if $K_{n-m+1}, K_{n-m+2}, \ldots, K_{n}$ are all of similar brightness. For $p<0$, inequality above is reversed.

Thus we obtain the conclusion.
Proof of Theorem 3. For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$, from (2.12), (2.19) and Lemma 1, we can get

$$
\begin{aligned}
& D\left(K_{1}, \ldots, K_{n}\right) \\
= & \frac{1}{n} \int_{S^{n-1}} \delta\left(K_{1}, u\right) \cdots \delta\left(K_{n}, u\right) d S(u) \\
\leq & n^{-\frac{1}{n}}\left[\int_{S^{n-1}} \delta^{n}\left(K_{1}, u\right) d S(u)\right]^{\frac{1}{n}} \cdots\left[\int_{S^{n-1}} \delta^{n}\left(K_{n}, u\right) d S(u)\right]^{\frac{1}{n}} \\
= & n^{-\frac{1}{n}}\left\{\int_{S^{n-1}}\left[\frac{1}{2} h\left(\Pi K_{1}, u\right)\right]^{n} d S(u)\right\}^{\frac{1}{n}} \cdots\left\{\int_{S^{n-1}}\left[\frac{1}{2} h\left(\Pi K_{n}, u\right)\right]^{n} d S(u)\right\}^{\frac{1}{n}} \\
= & v^{\frac{1}{n}}\left(K_{1}^{u}\right) \cdots v^{\frac{1}{n}}\left(K_{n}^{u}\right)
\end{aligned}
$$

with equality if and only if $K_{1}, \ldots, K_{n}$ are all of similar brightness.
Thus we get

$$
D^{n}\left(K_{1}, \ldots, K_{n}\right) \leq v\left(K_{1}^{u}\right) \cdots v\left(K_{n}^{u}\right)
$$

For $p$ equal to $-\infty, 0$ or $\infty$, we respectively define the mixed brightnessintegral of order $p$ by

$$
D_{p}\left(K_{1}, \ldots, K_{n}\right)=\lim _{s \rightarrow p} D_{s}\left(K_{1}, \ldots, K_{n}\right)
$$

As a direct consequence of Jensen's inequality [4] we have:
Proposition 1. If $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $-\infty \leq p \leq q \leq \infty$, then

$$
D_{p}\left(K_{1}, \ldots, K_{n}\right) \leq D_{q}\left(K_{1}, \ldots, K_{n}\right)
$$

with equality if and only if $K_{1}, \ldots, K_{n}$ have constant joint brightness.
Proof of Theorem 4. For $K_{1}, \ldots, K_{n} \in \mathcal{K}^{n}$ and $-\infty \leq p \leq 1$. By combining Theorem 3 with Proposition 1 we obtain

$$
\begin{aligned}
D_{p}^{n}\left(K_{1}, \ldots, K_{n}\right) & \leq D_{1}^{n}\left(K_{1}, \ldots, K_{n}\right) \\
& \leq v\left(K_{1}^{u}\right) \cdots v\left(K_{n}^{u}\right) .
\end{aligned}
$$

In view of the equality conditions of Theorem 1 with Proposition 1, equality holds if and only if $K_{1}, K_{2}, \ldots, K_{n}$ are all of similar brightness and have constant joint brightness. Thus we obtain the conclusion.

## References

[1] G. D. Chakerian, Isoperimetric inequalities for the mean width of a convex body, Geometriae Dedicata 1 (1973), no. 3, 356-362.
$\qquad$ , The mean volume of boxes and cylinders circumscribed about a convex body, Israel J. Math. 12 (1972), 249-256.
[3] R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge, 1995.
[4] H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.
[5] F. Lu, Mixed chord-integral of star bodies, preprint, 2007.
[6] E. Lutwak, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53 (1975), no. 2, 435-439.
[7] , A general Bieberbach inequality, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 493-495.
[8]
9] , Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91105.
[10] _ Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), no. 2, 901-916.
[11] R. Schneider, Convex Bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.

## Ni Li

College of Mathematics and Computer Science
Chongqing Normal University
Chongqing 400047, P. R. China
E-mail address: lini628@163.com
Baocheng Zhu
College of Mathematics and Computer Science
Chongqing Normal University
Chongqing 400047, P. R. China


[^0]:    Received December 8, 2008; Revised April 29, 2009.
    2000 Mathematics Subject Classification. 52A40.
    Key words and phrases. convex bodies, mixed projection bodies, brightness, mixed brightness, mixed brightness-integrals, Fenchel-Aleksandrov inequality.

    Researched is supported in part by the Nature Science Foundation of China (Grant No. 10801140).

