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AVERAGES AND COMPACT, ABSOLUTELY SUMMING
AND NUCLEAR OPERATORS ON C (9)

DumMiTRU PorA

ABSTRACT. In the paper we introduce averages of each type and use
these averages to construct examples of weakly compact operators on the
space C (§2) for which the necessary and sufficient conditions that they
be compact, absolutely summing or nuclear are distinct. A great number
of concrete examples, in various situations, are given.

1. Introduction

Let © be a compact Hausdorff space, Y the o-field of Borel subsets of 2,
C (€) the space of all scalar-valued continuous functions on € under the uniform
norm, X a Banach space and U : C'(©2) — X a bounded linear operator. It
is well-known, see [3, Chapter VI|, that U has a representing vector measure
G, and that U is weakly compact if and only if G takes its values in X; U is
compact if and only if G has norm compact range; U is absolutely summing if
and only if G has bounded variation; U is nuclear if and only if G has a Bochner
integrable Radon-Nikodym derivative with respect to its variation |G|.

In [8] are given explicit examples of bounded linear operators on C'[0, 1]
with values in ¢y which distinguish certain ideals of operators. In this paper
we complete the results and examples in [8] by giving many other examples.

We fix now some notations and terminology. Let X be a Banach space, ¥ a
o-field of sets and G : ¥ — X a vector measure. We denote by |G| the variation
measure of G, ||G|| the semivariation, ||G|| (E) = sup|,- <1 [z*G[(E), E € %,
see [3, Chapter I, pp. 3-4]. If (S, %, ) is a finite measure space, X a Banach
space and f : S — X a p-Bochner integrable function we write f(_) fdp for
the Bochner integral; if f : S — X is a u-Pettis integrable function, the Pettis
norm of f is defined by || f||peseis = SUP|ue <1 fg |27 ] dps, see [3, Chapter II].

If (Xy),en is a sequence of Banach spaces, we denote co (X, | n € N), the
Banach space of all sequences (2,,),,cy, Tn € Xy, for every n € N, ||z,|| — 0,
endowed to the norm ||(z5),,cn|| = suPpen [|#n || and similarly, I (X, | n € N)
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denote the Banach space of all sequences (,,),cy, Tn € Xy, for every n € N,

with sup,,cy [|2n || < 0o, endowed to the norm ||(zy),en|| = sup,en [[#n |-
When X,, = X, we write ¢ (X) resp. lo (X). By I’X (X) we denote

(X XX X o)

n times

The scalar field R (or C) is denoted K and if n € N, 1 < p < oo, then
= (Km0,

1

where [|[(a1,...,an)ll, = i leul”)? if p < oo and [[(eu,...,an)ll,, =
maxi<i<p |a;|. Further p* is the conjugate of p and by (eni);<;<, Wwe denote
the standard basis in I} o

If (an),ens (bn)nen are two real sequences we write a, < b, if and only if
there exist m, M > 0 such that mb, < a, < Mb, for every n € N. If k € N
and (ank),ens (buk),en are two real sequences we write @, < by, if and only
if there exist my, My > 0 such that mgb,i < anr < Myby,y for every n € N.

If X is a Banach space, 1 < p < oo, m € Nand x1, xo, ..., T, a finite system
of vectors in X, we write

=

wy (zi | 1<i<m; X) = sup (Ja" (@1)]" + - + |27 (2m)[")
lzl1<1

~ x|

)

where T (z*) = (2* (z1), ..., 2" (Tm))-

In the rest of the paper, B denotes the o-algebra of all Borel sets in [0, 1],
A B — [0,1] the Lebesgue measure, (r,),cy the sequence of Rademacher
functions and C'[0, 1] the space of all scalar-valued continuous functions on
[0,1] under the uniform norm. If X is a Banach space, L; (A, X) is the space
of A-Bochner integrable functions. If u, v are two positive measures we denote
1 ® v their product.

All notation and terminology, not otherwise explained, are as in [2, 3].

2. Scalar and vector averages

Let X be a Banach space, m € Nand x1, xs,. .., ., a finite system of vectors
in X. As in [8] we define Average (z; |1 <i <m) as the finite system with
2™ elements obtained by arranging in the lexicographical order of {—1,1}",
the set of all the elements of the form e1x1 + -+ + e for (e1,...,6m) €
{=1,1}"" = D,, (On {—1,1} we consider the natural order). We will consider
Average (z; | 1 <i <m) as an element of the space X2" and as sets we have
the equality

Average (z; |1 <i<m)={e1x14+ - +emTm | (€1,.-..,Em) € D} .
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The idea of considering these averages was suggested to the author by the
well-known discrete form of Rademacher means, namely the equality

1
1
[ e @+t @ldt =g 3 e+t el

see [1], [2]. Further, in [1, Exercise 8.18(a), p. 107], or [9, p. 64] appear also
these averages.

Lemma 1. Let m € N and a1, s, ..., a, be a finite system of scalars. Then
||Average (a; | 1 <i <m)|| =< [[(a1,...,am)|;
|[Average (a; | 1 <i <m)||; 2™ |[(a1,. .., qm)lly
. m
|Average (o; | 1 <i <m)l|, = (\/5) (o1, 0om)ly -
Proof. Indeed, in the real case, we have obvious
m
[1 1< < — £ . € —
|Average (a; | 1 <i<m)], (817.”12%(6[)171\ 100 + - ey | ;|a1|

and from here, taking the real and imaginary part, we deduce, in the complex

case
m

1 . m
5 Z la;| < [[Average (o | 1 < i <m)|| < Z v
i=1 i=1
see also [1, Exercise 8.18(a), p. 107], or [9, p. 64].
For the second, by Khichin’s inequality, see [1], [2], [5], we have
||Average (a; |1 < i < m)l||,= Z lerar + -+ emaum| < 2™ |[(a1, .. am)]lg -
e€D,,

The last equality follows from the well-known equality

1
3
|Average (a; |1 <3 <m)|, = ( Z leraq + - —|—8mam|2>
e€D,

= (v2)" s, )l =

Our next definition is a natural iteration for averages.
Definition 2. For k € N|J {0} define f; : N — N by

fo(n) =n,
frg1 (n) =270 k>0,

Let X be a Banach space, n € N and z1, xa,...,x, a finite system of vectors
in X. Define

Averagey (xz; |1 <i<n; X) = Average (z; | 1 <i<n; X).
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Let also k € N. For the f (n) finite system

Averagey, (xz | 1< <y X) = {61""7ﬂfk(”)} ’
say, we apply the same procedure and denote
Averagegy1 (zi | 1 < i< ny X) = Average (8; | 1 <i < fi (n); X).

We consider Averagey (x; | 1 <i < n;X) as an element of the space X fr(n)

Lemma 3. Letn € N, a1, asg,...,qa, be a finite system of scalars and k € N.
Then
[Average (a; | 1 < i <n)| = [[(e1, .. an)lly,
|Averages (a; |1 <i<n)|| =<2"|[(c1,...,an)|5,
|Averagey, (oi; | 1 <1 <n)l,

= fr1 () Vr(0) f2 (n) - fr—o (n) [(1s o an)lly s B> 3.

Proof. With the same notations as in Definition 2, by Lemma 1 we have

| Averagers (i | 1< i < n)l|., = [ Average (8; | 1< i < fi (n))

= H(,@l, . 75fk(n)>H1 = ||Averagey, (o | 1 < i < n)l|;,

oo

[Averagera (ai |1 < i <n)|ly = [|Average (B, | 1 <i < fi (n))]y

=200 |[(81, B )|, = s () [ Averagen (ai | 1< <)y

and

[Averageyi1 (oi [ 1 < i <)y = [[Average (B; | 1 < i < fi (n))ll,
— /25 ’(ﬁl,...ﬁfk(n))‘L
=V frt1(n) [[Averagey (a; | 1 < i < n)ll,.

Denote
ar = [|[Averagey (o [ 1 <i<n)|,
b = [[Averagey, (a; | 1 < i < n)l|;,
cr = ||Averagey, (a; | 1 < i < n)ll,.
Then from the above proved relations for each k£ > 1 we have
A1 = bis; brgr X fre1 (0) s i1 = e/ frgr (n).
Because by Lemma 1
a1 = [[Average (o | 1 < i < n)l, =V f1(n) [[(ea, ... an)ll,

we deduce

cr=+fi(n) fa(n)-- fu () [(ar,...an)lly, k=1
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From b1 < fra1 (n) cx we get

b1 = firr (W) V1 (0) fo (n) - fr (n) (s an) s B 21,

ie.,

b < fi (n) v/ fr(n) fa(n) -+ for () (o1, o)y B> 2,
and by Lemma 1

by = [[Average (o | 1 <i < n)|; < 2" |[(a1,...,00)],.
From apy1 < by, k > 1 we get

apt1 = fo (M) fir(n) fa (n) -+ fro1 (0) (s o ovam)|ly s k> 2,

i.e., for k£ > 3 we get the evaluations from the statement.
Also by Lemma 1,

as < by =2"||(a1,...,an)lly,

a1 = ||Average (a; | 1 <i <n)|l <|(c1,...,a0)|; - 0

We state now a result which is a well-known consequence of the Hahn-Banach
theorem.

Result. Let X be a Banach space. Then for each x € X we have

=]l = sup [2" (2)].
llzxI<1
Lemma 4. Let X be a Banach space, n € N, x1,xs,...,x, a finite system of

vectors in X and k € N. Then
|Average (z; | 1 <i<n; X)|| <wi(z; |1 <i<n; X),
|[Averages (z; |1 < i <n; X))o < 2"wa2 (z; [ 1 < i <ny X),
|Averagey, (z; | 1 <1i <n; X)|
= fem1 )V fr(n) fa(n) -+ foma ()ws (z; | L < i<y X), k> 3.
Proof. We will use the notations from Definition 2. From Result we have

|Average (z; | 1 <i < n; X)

lloo

= max |le1x1 +e2x2 + - -+ + E,Ty ||
e€Dy,

= max sup |e12” (z1) + 22" (T2) + -+ En” (24
£€Dn ||z~ ||<1

= sup max |e;x” (1) +eax” (x2) + -+ + enx” (24,)]
lz* <1 eeD,

= sup |[[Average (z* (z;) |1 <i<n)| -
flz=I<1

By Lemma 1, for each ||z*|| < 1 we have

[Average (a7 (z:) [ 1 < i < n)l, = [[(z" (i) [ 1 <d <n)|
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thus
||Average (z; | 1 <i<n; X)||  =<wi(z; |1 <i<n; X).
We prove now that for each k > 1,

||Average,1 (z;|1 <1 <n; X)||,, < sup |[Averager (z* (x;)|1 < i< n);.

lz=]<1

[

Indeed, by Lemma 1 and from what we have proved above we deduce
|[Averageyi1 (z; |1 < i <n; X)||
= [[Average (B; | 1 <i < fi (n); X)
wy (B |1 <4 < fr(n); X)

sup (2% (8;) | 1 <@ < fi (n))l,
flz*<1

oo

)

sup || Averagey (" (z;) | 1 < i < n)]], -
lz*]I<1

The Lemma 3, implies, for each & > 2 and each [|z*|| <1
| Averages (" (=) |1 < i < )l

= fie () fr () f2 (n) - fuma () |27 (1), 2™ ()l

Hence for k > 2

[|[Averagegi1 (z; | 1 < i <n; X)

[
= fx () Vi (n) fa(n) - o1 (R)ws (2, | 1 <i < n; X)

i.e., for k£ > 3 we get the evaluations from the statement.
Also, from Lemma 1

|Averages (x; | 1 <i<n; X)|| < sup [Average(z* (z;) |1 <3< n)|,

lz=I<1
=2 sup (2" (z:) | 1 <@ <m),
flz=I<1
=2"wq (z; | 1 <i<n; X). 0

Notation. Let (X,), oy be a sequence of Banach spaces, (2n;);<;<,, C Xy for
each n € N. For each n € N, Average (z,; | 1 <i<n; X,,) is an element of
the space X,ZLH and we consider the sequence

(%) (Average (zn; | 1 <4 <n; Xy))pen -

From Lemma 4, the sequence (x) is an element of the space
(**) CO(X17X1;-~-aXna~--;Xn7~-~)

(each X, appears 2" for each n € N) if and only if wy (2, |1 < i <n; X,,) — 0.
In order to avoid unpleasant writings, instead (#*) we write simply co (X, |
n € N).
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In the rest of the paper for a natural number k > 2 we denote
bn2 = 2n7
buk = fe—1 (n)\/f1 (n) fa(n) -+ fra (n), if k > 3.

Using the same convention as above, from Lemma 4, the sequence
(Averager (wni|1 <@ <n;X,)), oy is an element of the space co (X, | n € N)
if and only if byrwe (z; | 1 <i <n; X,) — 0.

3. The main results

We begin with a well-known fact:

Fact. Let (S,%,u) be a finite measure space, X, Y Banach spaces, g : S —
L(X,Y) a u-Bochner integrable function and G : ¥ — L(X,Y),

G(E):/gdu for E € X.
E
Then
l9lpersis = G (T) = sup / (g (s) 2.y} du (s)..
S

llzlI<1, ly*]I<1

This follows from the definition of semivariation and the Pettis norm and
the fact that {z @ y* | ||| <1, ||y*|| <1} is norming for L (X,Y).

Proposition 5. Let Q be a compact Hausdorff space, u a nonnegative finite
regular Borel measure on Q, (Xy), cn, (Yn),en two sequences of Banach spaces,
gn : Q — L(X,,Y,) u-Bochner integrable functions such that for each E € Yq

/ gndp — 0 in the operator norm.
E

Let U : C(Q) — co (L (X,,Y,) | n €N) be the operator defined by

Uf) = </Qf(w)gn(w)du(w)> .
ne
Then
(i) U is weakly compact.

(i1) U is compact if and only if sup Jo lgn (W) z,y*)| dpp (w) — 0.
llel <1, [ly*]I<1

(iil) U is absolutely summing if and only if [, sup ||gn (w)| dp (w) < oco.
neN

(iv) U is nuclear if and only if U is absolutely summing and | gn (w)| — 0
p-a.e..

Proof. Let G,, : ¥q — L(X,,Y,), Gn(E) = fE gndp for E € ¥q. The hy-
pothesis and Nikodym’s boundedness theorem, see [3], gives us that the family
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(Gnzy™)) <1, ly= (<1, nen 18 uniformly bounded, i.e., there exists L > 0 such
that

(1)
/Q\<gn (W), y") [ dp (W) =[(Grz,y™) [ (2) < L, V|[zl| < 1, [ly"[| <1,n € N.

From hypothesis we get [, f (w) gn (w) dp (w) — 0 for each simple function
f and from this fact and (1) we deduce [, f (w)gn (w)du(w) — 0 for each
f € B(Xq), so U is well defined. The representing measure of U is

G (E) = (/Egnwu(w))@, Eesq

which, by hypothesis, takes its values in ¢y (L (Xp,Y5) | n € N) and thus, see
[3, Chapter V1], U is weakly compact.

By [3, Chapter VI], U is compact if and only if the range of G is relatively
norm compact and this by Proposition 1(ii) in [8] is equivalent to || g,
which by Fact gives (ii).

By [3, Chapter VI], U is absolutely summing if and only if G is of bounded
variation, which by Proposition 1(iii) in [8] is equivalent to (iii).

By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and
G has a p-Bochner integrable derivative, and this by Proposition 1(iv) in [8],
is equivalent to (iv). O

||Pettis - O’

In view of Example 3 in [8] it is a natural question to apply average technique
for a triangular matrix of functions. Since by Lemma 4 there is a delineation
between averages of first order and averages of order greater or equal than two,
we analyze these two situations.

Proposition 6. Let Q2 be a compact Hausdorff space, i a nonnegative fi-
nite reqular Borel measure on 2, (X,),cy @ sequence of Banach spaces and

(hni)1gign C L1 (p, Xn)-
(a) Suppose that

wy (/ hmdu|1§i§n;Xn>HO for each E € Xq.
E

Let U : C () — co (X, | n € N) be the operator defined by

U(f) = (Average (/f(w)hm (w)dp (w) |1 <i<mn; Xn>) .
Q neN
Then
(i) U is weakly compact.
(ii) U is compact if and only if

sup th151 + -+ hnngn||Pettis — 0.
|€7;IS1
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(iii) U is absolutely summing if and only if
/ supwy (hp; (W) |1 <4 <n; X)) dp(w) < oo.
Q neN
(iv) U is nuclear if and only if U is absolutely summing and
wy (hpi (W) |1<i<n; X,) =0 for p-a.e. we Q.
(b) Let k > 2 be a natural number. Suppose that

bprws (/ hpidp | 1< <mn; Xn) — 0 for each E € Xq.
E

Let U : C () — ¢o (X | n € N) be the operator defined by

0 (9) = (verager ([ £ b @) dule) |1 i< m x, )

neN
Then

(i) U is weakly compact.

(ii) U is compact if and only if

bpr sup thlgl + hnngnHPettiS — 0.
€l <1

(iil) U is absolutely summing if and only if
/ngg brkws (hni (w) |1 <i < n; X,) dp (w) < oo.
(iv) U is nuclear if and only if U is absolutely summing and
bpkwa (hp; (W) |1 <i<n; X,,) =0 for p-a.e. weQ.
Proof. (a) Let g, : @ — L (X,I}) be the function defined by
(gn W)) (%) = (" (hp1 (W) 5., 2" (hpp (W) forw e Q2" € X
”1hm- @ eniy and V,, 1 C (Q) — L (X5, 17)

i.e., gn =

K3

(Vo () (&%) = ( [ F @) (i @) (@)oo [ @) (b (@) <w>) |
Observe that
V. (f) = /Q £ (@) gn (@) dpt ().

Further, because g,, is obvious Bochner integrable, by Hille’s theorem, see
[3, Chapter II, Theorem 2.6, p. 47], for each E € Xq, z* € X, we have

(/Egn (w)du(w)) (w*)=(/E:c* (hn1 (w))d,u(w),...,/Egc* (hon (w))d,u(w))

and thus

\ [ o @an

)=w1 (/Ehm(w)du(uJHlSiS”% Xn)

L(Xz0p
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which, by hypothesis, is convergent to zero. Proposition 5 assures that the
operator V : C' () — ¢ (L (X},17) | n € N) defined by

V() = Va () nen

takes its values in ¢q (L (X},17) | n € N).
Let f € C (). From Lemma 4 we have

[ verage ([ 1@)ms@)dn) 1< <m x,) HOO

W
= wy </Qf(w) i (@) dp () | 1< i < Xn) — IV ()]

and hence U takes its values in ¢ (X, | n € N) if and only if V' takes its values
in ¢ (L (X,17) | n € N), which, as we already proved, is true.
From (1) we deduce

c[VOI <UD < IV DI

for some constants ¢, C' > 0 independent of f.

This shows that U is compact (resp. U is absolutely summing) if and only
if V' is compact (resp. V is absolutely summing) which by Proposition 5 gives
(ii) and (iii).

Since (i) and (iv) do not follow from Proposition 5, we argue as follows. The
representing measure of U is

G (E) = (Average (/E i () dp (@) | 1< 0 < ms Xn>) for E € S,

neN
From Lemma 4 and hypothesis, for each E € 3

HAverage </ hpi (W) dp (w) |1 < i< n; Xn) H
E e}

= wy </ hpi (W) dp (w) |1 <i < n; Xn> — 0,
E

thus U is weakly compact.

By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and
G has a p-Bochner integrable derivative, and this, by Proposition 1(iv) in [8],
is equivalent to

||Average (hp; (w) |1 <1 <n;X,)|, — 0 for p-ae weqQ.
Then (iv) follows, because by Lemma 4, for each w € Q
||Average (hp; (w) |1 <1 <n; Xp)|l oo X wi (hni (W) [ 1 <3 <n; X))

(b) As we will see in the sequel the proof of (b) is similar to that of (a).
Indeed, in this case, let g, : Q@ — L (X},15) be the function defined by

(90 (@) () = bk (@ (it (@) -+, (i ())) for w € Q2" € X,
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Vi : C(2) = L (X}, 1%) the operator defined by
(Va(f)) (") =bnk </Qf(W) 2 (hn1 (W) dp (w) 5 .. ,/Qf(w)x*(hnn (w)) dp (w))
and observe that
V()= [ £ @) dute).

Further, because g, is Bochner integrable, as in (a) we deduce that for each
EeXq

\ [ an@an

. (/ i (@) dpt () | 1< i < m; Xn>
E

L(X;.03)

which, by hypothesis, is convergent to zero. Proposition 5 assures that the
operator V : C () — ¢ (L (X},1%) | n € N) defined by

V(f) = (Vo (F)nen

takes its values in ¢o (L (X}, 15) | n € N).
Let f € C (). From Lemma 4 we have

= bW </Qf(w) B (W) dp (W) | 1< i <y Xn) =[IVo ()

Average ( [ H@h@du@) | 1<i<n Xn) H
Q o)

(2)

and hence U takes its values in ¢ (X, | n € N) if and only if V' takes its values
in ¢ (L (X},1%) | n € N), which is true.
From (2) we deduce

c[VOI<ITDIF<CIV NI

for some constants ¢, C' > 0 independent of f.

This shows that U is compact (resp. U is absolutely summing) if and only
if V is compact (resp. V is absolutely summing) and Proposition 5 gives (ii)
and (iii).

The representing measure of U is

G(E)= (Averagek (/E hpi (W) dp (W) |1 <@ <mn Xn>> for E € Xq.
neN

From Lemma 4, for each FE € ¥q

e ([ s 1202 )|
E 00

= bprpwa (/ B (W) dp (W) |1 <14 < Xn) —0
E

by hypothesis, thus U is weakly compact.
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By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and
G has a p-Bochner integrable derivative, and this by Proposition 1(iv) in [§],
is equivalent to

||Averager (hn: (w) |1 <i<n; X,)||, — 0 for p-ae we
Then (iv) follows, because by Lemma 4, for each w €

|Averagey, (hn; (W) | 1 <@ <n;Xy)| o X bnkws (Aps (w) |1 <i<n; Xp,). O

In the next corollary, item (a) is an obvious extension of Example 3 in [8].
In addition to [8], it is natural to study the same problem for averages of order
greater or equal than two, i.e., item (b).

Corollary 7. Let (X,), oy be a sequence of Banach spaces, (xni)1§¢§n C Xp-
(a) Suppose sup,cyw2 (zni |1 <i<n; X,) < oo and let U : C[0,1] —
co (Xpn | n € N) be the operator defined by

U(f) = (Avemge (M /O () (0t | 1< < X,,))

Then

(i) U is weakly compact.

(ii) U is compact if and only if wy (xn; | 1 <i<mn; X,) — 0.

(iii) U is absolutely summing if and only if sup, ey w1 (ni | 1 < i <n; X,,) <
0.

(iv) U is nuclear if and only if wy (xn; | 1 <i<mn; X,,) — 0.

neN

(b) Let k > 2 be a natural number. Suppose sup, ey | bk jmax ||xm) < 00
i<n

and let U : C'[0,1] — ¢o (X, | n € N) be the operator defined by

U(f) = (Averagek (M /0 O s (Ot | 1< < Xn>>

Then
(i) U is weakly compact.
(ii) U is compact if and only if bpy max |Znill — 0.

neN

(iil) U is absolutely summing if and onl;; if sup bprws (T |1 <i<n; Xp) <
neN
0.

(iv) U is nuclear if and only if bypws (2 | 1 < i <n; X,,) — 0.

Proof. Take hy; = xpirnti € L1 (A, X,,) in Proposition 6.
(a) For each E € B, by Cauchy-Buniakowski-Schwartz’s inequality and hy-
pothesis we have

w ( [E Enimss (D dE] 1< i < n; Xn>
= s (I @l [ ra a4l @l | [ )

llz*<1
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/ErnH (t)dt /Ergn (t)dt 2) % — 0.

(i) follows from Proposition 6(a)(i).
From the definition of Pettis norm and Khinchin’s inequality we get

2

Swz(wmlﬁiﬁn;Xn)<

sup ||Inlr7l+151 +- Innr2n5n”pettis = wa (Inz | 1<e<n; Xn)
lei] <1

and (ii) follows from Proposition 6(a)(ii).
Further for each t € [0,1], |r,, (8)] = 1,

w1 (TpiTnyi (0) |1 <i<n; Xp) =w1 (2 | 1 <1< n; X))

and (iii), (iv) follow from Proposition 6(a)(iii), (iv).
(b) We observe that the hypothesis in Proposition 6(b) are satisfies because,
in our hypothesis, for each E € B

brpwo (xm/ Toas (0)dt |1 <i<n; Xn)
E

/E roes (1) dt

2

2

[l <1 + ot et (xnn)|2

1
2\ 3
(bnk 11;1?5(” ||xm||> <’/E Try1 (t) dt /E’an (t)dt ) — 0.

(i) follows from Proposition 6(b)(i). From the definition of Pettis norm,
Khinchin’s inequality and Result we get

= b, sup <|x* (a:nl)|2

IN

sup ||17n17’n+1§1 +-- -Tnn’angn“Pettis

lell, <1
= sup - sup [[(§2" (@n1) -5 60" (@nn))
RSS!
= sup [[(&" (@n1),- - 2" (@nn)) |
[EIES!

p— * .
= 2, S 2" (25s)]

= max [zl
1<i<n

From Proposition 6(b)(ii) we get (ii).
(iii), (iv) follow from Proposition 6(b)(iii), (iv), because for each ¢ € [0, 1]
Wo (TpiTnys (6) |1 <i<n; Xp) =wa (zn; | 1 <P <0y X)) 0
Remark. As in the proof of Example 3 in [8], it can be proved that for the

operator U defined as in Corollary 7, either U is absolutely summing, or its
representing measure is of everywhere infinite variation, see [4].
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4. The examples

In our examples, in view of Corollary 7, we need the following well-known
result. For the sake of completeness we include a short proof.

Proposition 8. (i) Let X be a Banach space, A C Bx~ norming for X,
(xi)1<i<n C X and 1 < p < co. Then

wp(x;|1<i<n; X)= bug”(m* (1),...,2" (xn))Hp
x* e

(ii) Let Q be a compact Hausdorff space, (fi)i<i<n C C(Q), f: Q — K",
flw=(01(w),....,fnw)) and 1 <p < oo. Then
W, (fi |17 <5 C ) = [f (o) -
(ii) Let X,Y be Banach spaces, U € L(X,Y), M > 0 such that ||z| <
U (z)|] < M ||z|| for any x € X. Let (x;)1<i<n C X and 1 < p < co. Then
wp(x; [1<i<n; X)<w,(U(x;)[1<i<n;Y)
<Muwy(z; |1 <i<n; X).
(iv) Let 1 <r < o0, 1 <p <00, A= (A1,...,\n) € K*. Then
wy (Aiepi [1<i<n ;1)) = | M2 1 — l;‘” =\l fp =17,
or ||Ally if p < r*, where 1 =1— % + 1
(v) Let 1 < p < 00, & = (Ti1,-.-,Tin) € K", B; = (215,...,70;) and
6=(084,...,8,). Then
Wp (i |1<i<ny )= ”ﬁ“zgo(lg) .
(vi) Let 1 < p,r < oo and A = (A1,..., ) € K". Then
wr (A |1 <0<y L,[0,1]) < ||A]|, if2<r,
or |Ally if 1 <r <2, where L =1 — 1.

2
(vii) Let (S,%,p) be a measure space, {En,...,E,} C X pairwise disjoint
with p (E;) < oo for each 1 <i<n,1<p,r<oco. Then

wr (i, | 1< < ms Ly () = max (IN [ (ED]F) if " <,

s

or (SN WENF) 0> pwhere = 24 L

(viili) Let (S,%,p) be a measure space, 1 < r < 00, (¢i)1<j<p, C Loo (1)
g:S—K" g(s)=(91(5),---,9n (5)). Then

wr (gi |1 <4< n; Loo (1) = llgllp_ umy -

(ix) Let (S,%, u) be a finite measure space, 1 < r < 00, (¢i)1<;<p, C L1 (1)
such that each g; takes positive values. Then o

(gl|1<2<nL1 H( gldﬂ77/gndﬂ)
S

T
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(x) Let (S,E,v) be a finite measure space, 1 < 1 < 00, (¢i)1<;<,, C L1 (V)
and g : S — K" defined by g (s) = (g1 (5),-..,9n (5)). Then

wy (rigi | 1<i<n; Li(A®v /||g s)|ly dv (s)
and if r > 1

wn (rags | 1<i<ms Ly A®v) = sup /I\Mﬁ ) dv (s) .
el Bl <1

(1]

(xi) Let (S,E,v) be a finite measure space, 1 < r < 00, (Ei);<;c,, C
partition of S, (a;);<;<, C K. Then

a

wy (a;rixg, |1 <i<n; Ly (A@v)) < |[(a1v (Er), ... aqv (En))], -
Proof. (i) See [6, Lemma 1.1.15, p. 40] where the proof use the equality

(1) wy(x; |1<i<n; X)= sup |[Mz1+-+A\znl.
YS!
(ii) See [6, Example 1.1.16, p. 40]; it is a particular case of (i), {0, | w € Q}
being norming for C (2).
(iii) and (iv) follow from hypothesis and (1).
(v) By (1) we have

wp (|1 <i<n;ll)= sup ||)\1x1+-~-—|—)\ngcn||oo

1A,
= su max |Ax1; + -+ AT
HAH p<1 1<]<n‘ 1 1] n n]|
= max (@ s@n)ll, = 1Bl ) -

(vi) From (1) and Khinchin’s inequality

wy (N |1 <i<m; Ly[0,1]) = sup
Bgel™,, |IBlI<1

=< sup (ZMM)HMAWHZ;’H-

BELL|IBII<1

ZAM

11[071]

The assertion follows from well-known formula of the norm of the multipli-
cation operator.
(vii) Again (1) gives

wy (Aixg, | 1< <n; Ly (1)

ZWXE

= sup
BELL BN

Lp(p)
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o=

=  sup (Zump >—||M o=,

BEL, [IBII<1

where v = ()\1 (1 (El)]g seees A [ (En)]%) We use again the norm of the

multiplication operator.
(viii) See [6, Example 1.1.17, p. 40].
(ix) By (1) we have

wlg|1<i<m L) = s [ |5 pald
i=1

I8l,~<1J8

n
S\/
S i=1

Swp(gi | 1<i<n; Ly (1))

~ <1 we have

>, | gt
i=1 S

and from here, by Holder’s inequality

‘ </gld,u,...,/gnd,u>
S s

For the right inequality, from f S

7.d,u‘

T

251‘91’ dp <

v<||(Lmtd [lonlan) |

Because each g; takes positive values the statement follows.

(x) By (1)

w (g [12i<m LiGey) = s [
18]« <1/[0,1]x S

2 |3;] fs |gi| du, Holder’s

inequality gives

wy (gi |1 <i<mn;Li(p

n

> Byri () gi (s)

) dv (s).

dtdv (s) .

The Fubini theorem gives

[ S| /(/ > onta

i=1
Since for each s € S, by Khinchin’s inequality,

/ Zﬂn 6: (5)] dt = /18, g1 () + -+ 18, gn (5)]°
by integratlon we obtain
w g |18 Snili (o) = s [ 1M (o ()l v ()
In case r = 1, we have supy g <1 [g |Mp (g ()]l dv (s) = [q[lg (s)llydv (s)

and the statement follows.
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(xi) is a particular case of (x). In this situation g : S — K™ is defined by
9(s) = (a1xp, (5),--- anxg, (5)). Incase r = 1, since (E;); ., ,, is a partition
of S, lg (s)lly = la1| Xg, (8) + -+ + |an| Xz, (s) and the statement follows. In
case r > 1, for each 3 € I

r*)

Mg (g (s)lly = lar[ 181l xz, (s) + -+ |an| Bl X, ()
and thus by (x)

wy (airixg, |1 <i<n; Li(A@wv))

= sup lail 1Bl v (Ei) | = [[(a1v (BY) - - s anv (En)) .-
Bl B~ <1 \ ;=1

In the next example item (a) is a natural extension of Example 3 in [8]; for
0, = {1}, a singleton, C (2,) = K. Further, item (b) is a natural completion
of the same example. The proof follows from Corollary 7 and Proposition 8(ii).

(]
Example 9. Let (Q2,),,cy

(<Pm‘)1§i§n - C (Qn) 9 San : Qn - Kna <Pn (W) = ((pnl (w) ey (pnn (w)) .

(a) Denote ¢ = (¢,,),cn and suppose that ¢ € loo (C'(Q2,,13) | n € N). Let
U:C0,1] = ¢ (C () | n € N) be the operator defined by

0 (9) = (verage (| @) (Dt | 1< i < © @)

Then

(i) U is weakly compact.

(ii) U is compact if and only if ¢ € ¢o (C (2,,,13) | n € N).

(iii) U is absolutely summing if and only if ¢ € o (C' (Q2,,1}) | n € N).

(iv) U is nuclear if and only if ¢ € ¢ (C (Q,,17) | n € N).

(aa) Let & > 2 be a natural number. Denote ©,,,q = (bnt®,,), ey and sup-
pose that ¢4 € loo (C (2, %) | n €N). Let U: C'[0,1] — ¢ (C () | n €N)
be the operator defined by

(5 = (Average (i [ W) (0t | 1< i < i C @)

Then
(i) U is weakly compact.
(if) U is compact if and only if ¢, .4 € ¢o (C (2,1%) | n € N).
(iii) U is absolutely summing if and only if ¢, 4 € loo (C (Q2n,15) | n € N).
(iv) U is nuclear if and only if ¢, 4 € ¢o (C (Q,,15) | n € N).

be a sequence of compact Hausdorff spaces,

neN

neN

To avoid repetitions in Examples 10, 13-16, if (avni);<;<,, nen 1S @ triangular
matrix of scalars, which in the statement of these examples will be written as
(O‘ni)i,nv we denote o, = (Qnt, - Qnn )y @ = (Qn), ey AN Amod = (bnkQn),en
for a natural number k& > 2.
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ST L) ST

in the statement of these examples will be written as (ani;), ;,,, we denote

ﬂnj = (anlja---aannj)a ﬁn = (ﬂnlw-mﬂnn)a ﬂ = (Bn)neN and ﬁmod =

(bnkfBy)pen for a natural number & > 2.

The proof of the next example in case 1 < p < 0o (resp. p = oo) follows
from Corollary 7 and Proposition 8(vi) (resp. (viii)).

Example 10. (a) Let 1 < p < o0, (an;);,, be such that o € I (I, [ n € N)
and U : C'[0,1] — ¢o (L, [0,1])
1
U(f)= (Average (amri/ F@)rpp (t)dt |1 <i<m; L,I0, 1]))
0

Then
(i) U is weakly compact.

neN
(ii) U is compact if and only if @ € ¢o (I% | n € N).

(iii) U is absolutely summing if and only if @ € I, (1§ | n € N).

(iv) U is nuclear if and only if a € ¢ (1§ | n € N).

(aa) Let k > 2 be a natural number, 1 < p < oo, (am)i’n such that ameq €
loo (IZ |meN)and U : C[0,1] — ¢y (Lp [0,1])

U(f) = (Averagek (amri /0 P (0| 1< 0 < i L, [0, 1}))

Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if apmoa € ¢o (1%, | n € N).

(b) Let (ap;), ,, besuch that a€lo (15 |n € N)and U:C [0, 1] — ¢o (L [0, 1])
the operator defined by

Uf) = (Average (amri /0 O s (Ot | 1< < Lo 1]))

Then

(i) U is weakly compact.

(ii) U is compact if and only if o € ¢ (I3 | n € N).

(iii) U is absolutely summing if and only if a € I (IT | n € N).

(iv) U is nuclear if and only if a € ¢y (I7 | n € N).

(bb) Let k > 2 be a natural number, (O‘ni)i,n such that ameq € loo (I |0 € N)
and U : C'[0,1] — ¢ (L [0,1])

U(f) = (Averagek (wm /0 () rees (0| 1< 0 < i Lo [0, 1}))

Then
(i) U is weakly compact.
(ii) U is compact if and only if ameq € co (I | n € N).
(iii) U is absolutely summing if and only if amed € I (18 | n € N).
(iv) U is nuclear if and only if aumea € ¢o (15 | n € N).

neN

neN

neN
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The next example is a natural extension of Example 10(b), (bb). The proof
follows from Corollary 7 and Proposition 8(viii). We remark that in the next
example, if:

1) Sp = [0,1], p, = A and all (gni);<icp nen € Loo (11,) are continuous,
then we must replace Lo (u,,,-) with C ([0,1],-).

2) S, =[0,1], p,, = X and gp; = a7 we get Example 10(b), (bb).

Example 11. Let (S,, %, ) be a sequence of finite measure spaces,

neN
(gni)lgign,neN C L (Mn) y On t Q, — Kn’ 9n = (gnla ce 7gnn) .

(a) Denote g = (gn), ey and suppose that g € lo (Loo (piy,13) | n € N).
Let U : C[0,1] — ¢o (Lo (1,) | » € N) be the operator defined by

0 (£) = (Average (gus | ) s (Dt |1 < i L )

Then

(i) U is weakly compact.

(ii) U is compact if and only if g € ¢o (Loo (i, 13) | n € N).

(iii) U is absolutely summing if and only if g € loo (Loo (ftn, 17) | n € N).

(iv) U is nuclear if and only if g € ¢o (Loo (i1, 1) | 7 € N).

(aa) Let £ > 2 be a natural number and denote gmod = (bnkgn),cn- SUppose
that gmod € loo (Loo (fn,1%) | n € N)andlet U: C'[0,1] — ¢ (Loo (11,) | n € N)
be the operator defined by

0 (5 = (averages (s [ e dt| 1< < n) o )

Then
(i) U is weakly compact.
(ii) U is compact if and only if gmod € ¢o (Loo (fin, %) | 7 € N).
(iii) U is absolutely summing if and only if gmod € loo (Loo (4, 15) | n € N).
(iv) U is nuclear if and only if gmea € ¢o (Loo (14y,,1%) | n € N).

neN

neN

The proof of the next example follows from Corollary 7 and Proposition 8(ix).

Example 12. Let (S, Xy, t,,) be a sequence of finite measure spaces,

neN
(gni)lgign,neN - Ll (/J’n) :
(a) Denote 8, = ([ggn1dpin: -, [ Gnndity), B = (B,),en, Suppose that

each g,; takes positive values and 8 € I, (I¥ | n € N).
Let U : C[0,1] — co (L1 (1) | » € N) be the operator defined by

U(f) = (Avemge (g / W e dt| 1< < n) Ly <un>)

Then
(i) U is weakly compact.
(ii) U is compact if and only if 5 € ¢ (I5 | n € N).

neN



918 DUMITRU POPA

(iii) U is absolutely summing if and only if 5 € I, (I7 | n € N).
(iv) U is nuclear if and only if 5 € ¢y (I | n € N).
(aa) Let k > 2 be a natural number. Denote

By = (/ |gn1|dUn)"'a/ |gnndﬂn>7
S S

Brmod = (bnkBy,),en and suppose that 8, .4 € loo (I3, | n € N).
Let U : C[0,1] — ¢o (L1 (@) | » € N) be the operator defined by

U(f) = (Avemgek (gm- /01 f@)rnp (0)dt]1<i< n) s Ly (un)>

Then

(i) U is weakly compact.

(ii) U is compact if and only if 8,4 € co (I | n € N).

(iii) If, in addition, each g,; takes positive values, U is absolutely summing
if and only if 5,4 € leo (I5 | n € N).

(iv) If, in addition, each g,; takes positive values, U is nuclear if and only if
Bmod € ¢ (lg | n e N)

neN

In the rest of the paper, if 1 < p < 2 define r by % = 3 + L. The proof of
the next example follows from Corollary 7 and Proposition 8(iv) and (v).

Example 13. (a) Let (an;);,, be such that o € loo (I} [n €N) if 1 < p < 2,
ora€ls (% |neN)if2<pand U:C[0,1] —co (I} | n €N)

U(f)= (Average (am-em- /1 fF@)rnp (O)dt |1 <i<n; l;))
0

Then
(i) U is weakly compact.
(ii) U is compact if and only if @ € ¢ (I’ [ n€N) for 1 <p < 2, or a €
n |neN)for 2 <p.
(iii) U is absolutely summing if and only if a € I (I | n € N).
(iv) U is nuclear if and only if a € ¢ (l;} | n €N).
(b) Let (ap;),;,, be such that a € I(I% | n € N) and U : C[0,1] —
Co l

neN
Co (
(I | n € N) the operator defined by

U(f)= <Avemge <amem /1 F@) rnp: (0)dt |1 <i<m l&))
0

Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if a € ¢o (I, | n € N).

(c) Let (anij), ;,, be such that 3 € o (I3, (I3) [n € N) and U : C'[0,1] —
¢o (1% | m € N) the operator defined by

neN

1
U(f)= <Avemge ((annem + o+ Qpinenn) / F@Ornp@®dt]|1<i<m z;))
0

neN
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Then
(i) U is weakly compact.
(ii) U is compact if and only if 5 € ¢o (I% (I%) | n € N).
(iii) U is absolutely summing if and only if 5 € lo (I% (I7') | n € N).
(iv) U is nuclear if and only if 3 € ¢y (I, (I7) | n € N).

The next example is a natural completion of Example 13. The proof follows
from Corollary 7 and Proposition 8(iv) and (v).

Example 14. (a) Let k£ > 2 be a natural number, 1 < p < oo, (ayi);,, such
that Amod € loo (1% | n € N) and U : C'[0,1] — ¢o (17 | n € N)

U(f) = (Averagek (am-em- /1 F@)rnp (O)dt|1<i<n; l;}) )
0

Then

(i) U is weakly compact.

(i) U is compact if and only if amed € o (I% | n € N).

(iii) for p > 2, U is absolutely summing; for 1 < p < 2, U is absolutely
summing if and only if amed € loo (I | 7 € N).

(iv) for p > 2, U is nuclear if and only if U is compact if and only if ayeq €
co (I | m e N); for 1 <p < 2, U is nuclear if and only if ameq € ¢o (I | 1 € N).

(b) Let k > 2 be a natural number, (a;); ,, such that amea € loo (I, | 7 € N)
and U : C[0,1] = o (IL | n€N)

neN

1
U(f) = (Averagek <am-em-/ F@) g (O)dt] 1 <i<mn l&))
0 neN
Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if amoa € o (I% | n € N).
(c) Let k > 2 be a natural number, (ani;); ;,, such that 8,4 € loo (I (I%) |
neN)and U :C[0,1] — ¢ (I | n €N)

1
U (f) =(Average;C ((Oém'lem + -t amnenn)/ F@)rpes (B)dt |1 <i<m; l&))
0 neN

Then

(i) U is weakly compact.

(ii) U is compact if and only if 5,4 € co (I (I%) | n € N).

(iii) U is absolutely summing if and only if 5,4 € loo (I% (I5) | n € N).

(iv) U is nuclear if and only if 8,4 € co (I% (13) | n € N).

The Examples 13 and 14 can be extended to a more general situation. For
this we recall, that if 1 < p < oo, a Banach space X contains [}}’s uniformly if
and only if there exists A > 1 such that for each n € N there exists a bounded

linear operator J : [ — X such that

(%) 1€, < 1T Ol x < ALl V€ € L.
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A deep result of Krivine’s, see [7, p. 233], asserts that a Banach space X
contains [)’s uniformly if and only if for all A > 1, all n € N there exists a
bounded linear operator J : [y — X such that

€, < 1 (©)llx < Aligll, . vE € L.

For example, from Khinchin’s inequality it follows that for each 1 < p < oo,
L, [0,1] contains {3’s uniformly, thus Example 10(a), (aa) is a particular case
of next example.

From [1, Exercise 8.18(a), p. 107] it follows that Lo [0, 1] contains I}’s uni-
formly, thus Example 10(b), (bb) is also a particular case of next example.

In the statement of the next example we will use the operator J which occur
in (%).

Example 15. (a) Let 1 < p < oo, X be a Banach space which contains
ly’s uniformly, (an;);,, such that a € I (I} [n€N)if 1 < p <2, or a €
loo (I |meN)if 2 <p. Let U, : C[0,1] — ¢o (X) be the operator defined by

U (1) = (Average (s (e | ) s 1) @) 1<i<n)

Then
(i) U, is weakly compact.
ii) Uy is compact if and only if @ € ¢o (I [neN)if 1 < p <2, 0or a €

neN

i
" |neN)if2<p.
iii) U, is absolutely summing if and only if o € I (l; |neN).
iv) Ug is nuclear if and only if a € ¢o (I | n € N).
(b) Let X be a Banach space which contains I,’s uniformly, (ay;);,, such
that o € oo (I, | n € N). Let Uy, : C'[0,1] — ¢ (X) be the operator defined by

U (1) = (Average (nid (en) [ @) (0 @) [1<i<n)

Then
(i) U, is absolutely summing.
(ii) U, is compact if and only if U, is nuclear if and only if o« € ¢o (I%, | n € N).
(c) Let X be a Banach space which contains [Z’s uniformly, (a,;) such
that 58 € loo (I (13) | n € N) and for each natural number n denote
Tpi = apind (en1) + aniod (€n2) + -+ 4 Anind (€nn) -
Let Ug : C'[0,1] — co (X) be the operator defined by

Uy (f) = (Average (xn /0 O () | 1< < n))

(
Co(
(
(

neN

4,J,m

neN
Then

(1) Ug is weakly compact.

(ii) Ug is compact if and only if 8 € ¢o (I (1) | n € N).

(iii) Ug is absolutely summing if and only if 8 € I (I% (I7) | n € N).
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(iv) Ug is nuclear if and only if 5 € ¢o (I, (I7) | n € N).

(aa) Let k > 2 be a natural number, 1 < p < oo, X a Banach space which
contains [;’s uniformly, (ayi); ,, such that amed € loo (1% | 7 € N).

Let U, : C'[0,1] — ¢o (X) be the operator defined by

Ua (f) = (Averagek <am-J(em) /O 1 F () o () dt> 11<i< n)

Then

(i) Uy is weakly compact.

(ii) U, is compact if and only if apmeq € ¢ (I% | n € N).

(iii) for p > 2, U, is absolutely summing; for 1 < p < 2, U is absolutely
summing if and only if aed € loo (I | n € N).

(iv) for p > 2, U, is nuclear if and only if U, is compact if and only if
Qmod € ¢o (I |meN); for 1 < p < 2, U, is nuclear if and only if aueq €
Co (l? | n e N)

(bb) Let k& > 2 be a natural number, X a Banach space which contains {7.’s
uniformly, (an;); ,, such that ameq € lo (I5, [ 7 € N). Let Uy : C'[0,1] — o (X)
be the operator defined by

Us (f) = (Averagek (amJ(em-) /0 O () dt) 11<i< n)

Then

(i) U, is absolutely summing,.

(ii) U, is compact if and only if U, is nuclear if and only if aumeq € co(I% |
eN).

(cc) Let k > 2 be a natural number, X a Banach space which contains
15.’s uniformly, (ouij); ;,, such that 8,4 € loo (1% (1) [ n € N) and for each
natural number n denote

neN

neN

Tpi = Qnitd (enl) + apiod (€n2) + 4 onind (enn) .
Let Ug : C'[0,1] — co (X) be the operator defined by

Uy (f) = (Averagek (wm- /0 ) s () dt) 1<i< n)

neN
Then
(1) Ug is weakly compact.
(ii) Ug is compact if and only if 8,04 € co (1% (I%) | n € N).
(iii) Up is absolutely summing if and only if 8,4 € loo (IZ (I3) | n € N).
(iv) Ugs is nuclear if and only if 8.4 € co (I (I%) | n € N).

Proof. (a) From Corollary 7(a), U, is weakly compact and further U, is com-
pact if and only if wa (ap;J (en;) | 1 <i < n) — 0;

U, is absolutely summing if and only if sup wy (i (€n:) | 1 < i < n) < oo;
neN
U, is nuclear if and only if w1 (apniJ (en:) | 1 < i< n) — 0.
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From (%) and Proposition 8(iii) and (iv) the statement follows.

(aa) The proof is similar to that of (a) and use Corollary 7(b). We omit the
details. The proofs of (b), (bb) and (c), (cc) are also similar to that of (a). We
prove now (c).

From Corollary 7(a) Ug is weakly compact and further

Up is compact if and only if wy (2, | 1 <i<n) — 0;

Up is absolutely summing if and only if sup wy (zp; | 1 <7 < n) < oo;

neN

Ug is nuclear if and only if wy (zn; | 1 <7 <n) — 0.

From (%) an Proposition 8(iii) and (v) we get the statement.

Since, by the famous Dvoretzky theorem, see [2, Chapter 19], each infinite
dimensional Banach space contains [5’s uniformly, i.e., Ve > 0, Vn € N there
exists a bounded linear operator J : I3 — X such that

() I€lly < 1T Ollx <A +2)llElly,VE € l3
from Example 15(a), (aa) we get the next example; we use in the statement of
this example the operator J from (xx). O

Example 16. Let X be an infinite dimensional Banach space and (ani)im.
(a) fa €l (I | n€N), let U, : C[0,1] — co (X) be the operator defined
by

Ua (f) = (Average (am-J(em-) /0 1 F () Toss (£) dt) 11<i< n)

Then

(i) Uy, is weakly compact.

(ii) Uy is compact if and only if o € ¢ (I | n € N).

(iii) U, is absolutely summing if and only if a € I (I5 | n € N).

(iv) U, is nuclear if and only if o € ¢ (15 | n € N).

(b) If & > 2 is a natural number and amed € loo (I% | n € N), let U, :
C'[0,1] — ¢ (X) be the operator defined by

Ua (f) = (Averagek (amJ(em-) /O 1 F () s (1) dt) 11<i< n)

Then

(i) Uy is absolutely summing.

(ii) U, is nuclear if and only if U, is compact if and only if ameq € co(I% | n €
N).

neN

neN

The proof of the next example follows from Corollary 7 and Proposition 8(x),
(xi).
Example 17. Let (S,,Z,,Vn),cn be a sequence of finite measure spaces.

(a) Let (gni)1<jcn C L1 (Vn)s gn = (gn1s-- -+ Gnn) + Sp — K™ be such that

sup  sup / 1M (g (50) 1y dvn (50) < 0.
nEN,Hel;,HBMSl Sn
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Let U : C[0,1] — ¢o (L1 (A ®v,,) | n € N) be the operator defined by

1
U(f)= <Average (n—gm-/ F@)rpp (O)dt]1<i< n) i Li(A® Vn)>
0 neN
Then
(i) U is weakly compact.
(ii) U is compact if and only if

sup / 1M (9 (50))ly v () — O.
BEIF,|BI,<1 S Sy

(iii) U is absolutely summing if and only if sgg Js, llgn (sn)lla dvn (sn) < 0.

(iv) U is nuclear if and only if [¢ g (sn)ll2 dvn (s0) — 0.
(b) Let (O‘ni)i,n c K, (Eni)1gign C X, be a partition for S,,,

ﬂn = (anlyn (Enl) yoee s Onpln (Enn)) s 6 = (5n)neN

such that 8 € I (I5 | n € N).
Let U : C[0,1] — ¢o (L1 (A® vy,) | n € N) be the operator defined by

1
U (5)=(verage (anirixe,, [ 1O nu@dt1i<n);i (o))
0 neN

Then

(i) U is weakly compact.

(ii) U is compact if and only if 8 € ¢ (I% | n € N).

(iii) U is absolutely summing if and only if § € lo, (I | n € N).

(iv) U is nuclear if and only if 5 € ¢o (I | n € N).

(bb) Let k& > 2 be a natural number, (an;);,, C K, (Eni)j<;<,, C X0 be
a partition for Sy, B, = (n1Vn (En1) s @i (Enn))s Bmod = 0nkBp)nen
such that 8.4 € loc (I | n € N).

Let U : C[0,1] — ¢o (L1 (1 ® vy,) | n € N) be the operator defined by

1
U(f)= (Averagek (ozm»rixEm / f@)rnmi(@®)de|1<i< n> i L (A® I/n))
0 neN

Then

(i) U is weakly compact.

(ii) U is compact if and only if §,,,q4 € co (I% | n € N).

(iii) U is absolutely summing if and only if 3,,.4 € loo (15 | n € N).

(iv) U is nuclear if and only if 8,4 € co (I5 | n € N).
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