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AVERAGES AND COMPACT, ABSOLUTELY SUMMING
AND NUCLEAR OPERATORS ON C (Ω)

Dumitru Popa

Abstract. In the paper we introduce averages of each type and use
these averages to construct examples of weakly compact operators on the
space C (Ω) for which the necessary and sufficient conditions that they
be compact, absolutely summing or nuclear are distinct. A great number
of concrete examples, in various situations, are given.

1. Introduction

Let Ω be a compact Hausdorff space, ΣΩ the σ-field of Borel subsets of Ω,
C (Ω) the space of all scalar-valued continuous functions on Ω under the uniform
norm, X a Banach space and U : C (Ω) → X a bounded linear operator. It
is well-known, see [3, Chapter VI], that U has a representing vector measure
G, and that U is weakly compact if and only if G takes its values in X; U is
compact if and only if G has norm compact range; U is absolutely summing if
and only if G has bounded variation; U is nuclear if and only if G has a Bochner
integrable Radon-Nikodym derivative with respect to its variation |G|.

In [8] are given explicit examples of bounded linear operators on C [0, 1]
with values in c0 which distinguish certain ideals of operators. In this paper
we complete the results and examples in [8] by giving many other examples.

We fix now some notations and terminology. Let X be a Banach space, Σ a
σ-field of sets and G : Σ → X a vector measure. We denote by |G| the variation
measure of G, ‖G‖ the semivariation, ‖G‖ (E) = sup‖x∗‖≤1 |x∗G| (E), E ∈ Σ,
see [3, Chapter I, pp. 3–4]. If (S, Σ, µ) is a finite measure space, X a Banach
space and f : S → X a µ-Bochner integrable function we write

∫
(·) fdµ for

the Bochner integral; if f : S → X is a µ-Pettis integrable function, the Pettis
norm of f is defined by ‖f‖Pettis = sup‖x∗‖≤1

∫
S
|x∗f | dµ, see [3, Chapter II].

If (Xn)n∈N is a sequence of Banach spaces, we denote c0 (Xn | n ∈ N), the
Banach space of all sequences (xn)n∈N, xn ∈ Xn for every n ∈ N, ‖xn‖ → 0,
endowed to the norm

∥∥(xn)n∈N
∥∥ = supn∈N ‖xn‖ and similarly, l∞ (Xn | n ∈ N)
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denote the Banach space of all sequences (xn)n∈N, xn ∈ Xn for every n ∈ N,
with supn∈N ‖xn‖ < ∞, endowed to the norm

∥∥(xn)n∈N
∥∥ = supn∈N ‖xn‖.

When Xn = X, we write c0 (X) resp. l∞ (X). By ln∞ (X) we denote

(X × · · · ×X︸ ︷︷ ︸
n times

, ‖ ‖∞).

The scalar field R (or C) is denoted K and if n ∈ N, 1 ≤ p ≤ ∞, then

lnp =
(
Kn, ‖ ‖p

)
,

where ‖(α1, . . . , αn)‖p = (
∑n

i=1 |αi|p)
1
p if p < ∞ and ‖(α1, . . . , αn)‖∞ =

max1≤i≤n |αi| . Further p∗ is the conjugate of p and by (eni)1≤i≤n we denote
the standard basis in lnp .

If (an)n∈N, (bn)n∈N are two real sequences we write an ³ bn if and only if
there exist m, M > 0 such that mbn ≤ an ≤ Mbn for every n ∈ N. If k ∈ N
and (ank)n∈N, (bnk)n∈N are two real sequences we write ank ³ bnk if and only
if there exist mk,Mk > 0 such that mkbnk ≤ ank ≤ Mkbnk for every n ∈ N.

If X is a Banach space, 1 ≤ p < ∞, m ∈ N and x1, x2, . . . , xm a finite system
of vectors in X, we write

wp (xi | 1 ≤ i ≤ m; X) = sup
‖x∗‖≤1

(|x∗ (x1)|p + · · ·+ |x∗ (xm)|p) 1
p

=
∥∥T : X∗ → lmp

∥∥ ,

where T (x∗) = (x∗ (x1) , . . . , x∗ (xm)).
In the rest of the paper, B denotes the σ-algebra of all Borel sets in [0, 1],

λ : B → [0, 1] the Lebesgue measure, (rn)n∈N the sequence of Rademacher
functions and C [0, 1] the space of all scalar-valued continuous functions on
[0, 1] under the uniform norm. If X is a Banach space, L1 (λ,X) is the space
of λ-Bochner integrable functions. If µ, ν are two positive measures we denote
µ⊗ ν their product.

All notation and terminology, not otherwise explained, are as in [2, 3].

2. Scalar and vector averages

Let X be a Banach space, m ∈ N and x1, x2,. . . , xm a finite system of vectors
in X. As in [8] we define Average (xi | 1 ≤ i ≤ m) as the finite system with
2m elements obtained by arranging in the lexicographical order of {−1, 1}m,
the set of all the elements of the form ε1x1 + · · · + εmxm for (ε1, . . . , εm) ∈
{−1, 1}m = Dm (On {−1, 1} we consider the natural order). We will consider
Average (xi | 1 ≤ i ≤ m) as an element of the space X2m

and as sets we have
the equality

Average (xi | 1 ≤ i ≤ m) = {ε1x1 + · · ·+ εmxm | (ε1, . . . , εm) ∈ Dm} .
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The idea of considering these averages was suggested to the author by the
well-known discrete form of Rademacher means, namely the equality

∫ 1

0

‖x1r1 (t) + · · ·+ xmrm (t)‖ dt =
1

2m

∑

(ε1,...,εm)∈D

‖ε1x1 + · · ·+ εmxm‖

see [1], [2]. Further, in [1, Exercise 8.18(a), p. 107], or [9, p. 64] appear also
these averages.

Lemma 1. Let m ∈ N and α1, α2, . . . , αm be a finite system of scalars. Then

‖Average (αi | 1 ≤ i ≤ m)‖∞ ³ ‖(α1, . . . , αm)‖1 ,

‖Average (αi | 1 ≤ i ≤ m)‖1 ³ 2m ‖(α1, . . . , αm)‖2 ,

‖Average (αi | 1 ≤ i ≤ m)‖2 =
(√

2
)m

‖(α1, . . . , αm)‖2 .

Proof. Indeed, in the real case, we have obvious

‖Average (αi | 1 ≤ i ≤ m)‖∞ = max
(ε1,...,εm)∈Dm

|ε1α1 + · · ·+ εmαm| =
m∑

i=1

|αi|

and from here, taking the real and imaginary part, we deduce, in the complex
case

1
2

m∑

i=1

|αi| ≤ ‖Average (αi | 1 ≤ i ≤ m)‖∞ ≤
m∑

i=1

|αi|

see also [1, Exercise 8.18(a), p. 107], or [9, p. 64].
For the second, by Khichin’s inequality, see [1], [2], [5], we have

‖Average (αi |1 ≤ i ≤ m)‖1 =
∑

ε∈Dm

|ε1α1 + · · ·+ εmαm| ³ 2m‖(α1, . . . , αm)‖2 .

The last equality follows from the well-known equality

‖Average (αi | 1 ≤ i ≤ m)‖2 =

( ∑

ε∈Dm

|ε1α1 + · · ·+ εmαm|2
) 1

2

=
(√

2
)m

‖(α1, . . . , αm)‖2 . ¤

Our next definition is a natural iteration for averages.

Definition 2. For k ∈ N⋃ {0} define fk : N→ N by
{

f0 (n) = n,
fk+1 (n) = 2fk(n), k ≥ 0.

Let X be a Banach space, n ∈ N and x1, x2, . . . , xn a finite system of vectors
in X. Define

Average1 (xi | 1 ≤ i ≤ n; X) = Average (xi | 1 ≤ i ≤ n; X) .
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Let also k ∈ N. For the fk (n) finite system

Averagek (xi | 1 ≤ i ≤ n; X) =
{

β1, . . . , βfk(n)

}
,

say, we apply the same procedure and denote

Averagek+1 (xi | 1 ≤ i ≤ n; X) = Average (βi | 1 ≤ i ≤ fk (n) ; X) .

We consider Averagek (xi | 1 ≤ i ≤ n; X) as an element of the space Xfk(n).

Lemma 3. Let n ∈ N, α1, α2, . . . , αn be a finite system of scalars and k ∈ N.
Then

‖Average (αi | 1 ≤ i ≤ n)‖∞ ³ ‖(α1, . . . , αn)‖1 ,

‖Average2 (αi | 1 ≤ i ≤ n)‖∞ ³ 2n ‖(α1, . . . , αn)‖2 ,

‖Averagek (αi | 1 ≤ i ≤ n)‖∞
³ fk−1 (n)

√
f1 (n) f2 (n) · · · fk−2 (n) ‖(α1, . . . , αn)‖2 , k ≥ 3.

Proof. With the same notations as in Definition 2, by Lemma 1 we have

‖Averagek+1 (αi | 1 ≤ i ≤ n)‖∞ = ‖Average (βi | 1 ≤ i ≤ fk (n))‖∞
³

∥∥∥
(
β1, . . . , βfk(n)

)∥∥∥
1

= ‖Averagek (αi | 1 ≤ i ≤ n)‖1 ,

‖Averagek+1 (αi | 1 ≤ i ≤ n)‖1 = ‖Average (βi | 1 ≤ i ≤ fk (n))‖1
³ 2fk(n)

∥∥∥
(
β1, . . . , βfk(n)

)∥∥∥
2

= fk+1 (n) ‖Averagek (αi | 1 ≤ i ≤ n)‖2
and

‖Averagek+1 (αi | 1 ≤ i ≤ n)‖2 = ‖Average (βi | 1 ≤ i ≤ fk (n))‖2
=

√
2fk(n)

∥∥∥
(
β1, . . . , βfk(n)

)∥∥∥
2

=
√

fk+1 (n) ‖Averagek (αi | 1 ≤ i ≤ n)‖2 .

Denote

ak = ‖Averagek (αi | 1 ≤ i ≤ n)‖∞ ,

bk = ‖Averagek (αi | 1 ≤ i ≤ n)‖1 ,

ck = ‖Averagek (αi | 1 ≤ i ≤ n)‖2 .

Then from the above proved relations for each k ≥ 1 we have

ak+1 ³ bk; bk+1 ³ fk+1 (n) ck; ck+1 = ck

√
fk+1 (n).

Because by Lemma 1

c1 = ‖Average (αi | 1 ≤ i ≤ n)‖2 =
√

f1 (n) ‖(α1, . . . , αn)‖2
we deduce

ck =
√

f1 (n) f2 (n) · · · fk (n) ‖(α1, . . . , αn)‖2 , k ≥ 1.
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From bk+1 ³ fk+1 (n) ck we get

bk+1 ³ fk+1 (n)
√

f1 (n) f2 (n) · · · fk (n) ‖(α1, . . . , αn)‖2 , k ≥ 1,

i.e.,
bk ³ fk (n)

√
f1 (n) f2 (n) · · · fk−1 (n) ‖(α1, . . . , αn)‖2 , k ≥ 2,

and by Lemma 1

b1 = ‖Average (αi | 1 ≤ i ≤ n)‖1 ³ 2n ‖(α1, . . . , αn)‖2 .

From ak+1 ³ bk, k ≥ 1 we get

ak+1 ³ fk (n)
√

f1 (n) f2 (n) · · · fk−1 (n) ‖(α1, . . . , αn)‖2 , k ≥ 2,

i.e., for k ≥ 3 we get the evaluations from the statement.
Also by Lemma 1,

a2 ³ b1 = 2n ‖(α1, . . . , αn)‖2 ,

a1 = ‖Average (αi | 1 ≤ i ≤ n)‖∞ ³ ‖(α1, . . . , αn)‖1 . ¤

We state now a result which is a well-known consequence of the Hahn-Banach
theorem.

Result. Let X be a Banach space. Then for each x ∈ X we have

‖x‖ = sup
‖x∗‖≤1

|x∗ (x)| .

Lemma 4. Let X be a Banach space, n ∈ N, x1, x2, . . . , xn a finite system of
vectors in X and k ∈ N. Then

‖Average (xi | 1 ≤ i ≤ n; X)‖∞ ³ w1 (xi | 1 ≤ i ≤ n; X) ,

‖Average2 (xi | 1 ≤ i ≤ n; X)‖∞ ³ 2nw2 (xi | 1 ≤ i ≤ n; X) ,

‖Averagek (xi | 1 ≤ i ≤ n; X)‖∞
³ fk−1 (n)

√
f1 (n) f2 (n) · · · fk−2 (n)w2 (xi | 1 ≤ i ≤ n; X) , k ≥ 3.

Proof. We will use the notations from Definition 2. From Result we have

‖Average (xi | 1 ≤ i ≤ n; X)‖∞
= max

ε∈Dn

‖ε1x1 + ε2x2 + · · ·+ εnxn‖
= max

ε∈Dn

sup
‖x∗‖≤1

|ε1x
∗ (x1) + ε2x

∗ (x2) + · · ·+ εnx∗ (xn)|

= sup
‖x∗‖≤1

max
ε∈Dn

|ε1x
∗ (x1) + ε2x

∗ (x2) + · · ·+ εnx∗ (xn)|

= sup
‖x∗‖≤1

‖Average (x∗ (xi) | 1 ≤ i ≤ n)‖∞ .

By Lemma 1, for each ‖x∗‖ ≤ 1 we have

‖Average (x∗ (xi) | 1 ≤ i ≤ n)‖∞ ³ ‖(x∗ (xi) | 1 ≤ i ≤ n)‖1



904 DUMITRU POPA

thus
‖Average (xi | 1 ≤ i ≤ n; X)‖∞ ³ w1 (xi | 1 ≤ i ≤ n; X) .

We prove now that for each k ≥ 1,

‖Averagek+1 (xi |1 ≤ i ≤ n; X)‖∞ ³ sup
‖x∗‖≤1

‖Averagek (x∗ (xi) |1 ≤ i ≤ n)‖1 .

Indeed, by Lemma 1 and from what we have proved above we deduce

‖Averagek+1 (xi | 1 ≤ i ≤ n; X)‖∞
= ‖Average (βi | 1 ≤ i ≤ fk (n) ; X)‖∞
³ w1 (βi | 1 ≤ i ≤ fk (n) ; X)

= sup
‖x∗‖≤1

‖(x∗ (βi) | 1 ≤ i ≤ fk (n))‖1
= sup

‖x∗‖≤1

‖Averagek (x∗ (xi) | 1 ≤ i ≤ n)‖1 .

The Lemma 3, implies, for each k ≥ 2 and each ‖x∗‖ ≤ 1

‖Averagek (x∗ (xi) | 1 ≤ i ≤ n)‖1
³ fk (n)

√
f1 (n) f2 (n) · · · fk−1 (n) ‖(x∗ (x1) , . . . , x∗ (xn))‖2 .

Hence for k ≥ 2

‖Averagek+1 (xi | 1 ≤ i ≤ n; X)‖∞
³ fk (n)

√
f1 (n) f2 (n) · · · fk−1 (n)w2 (xi | 1 ≤ i ≤ n; X)

i.e., for k ≥ 3 we get the evaluations from the statement.
Also, from Lemma 1

‖Average2 (xi | 1 ≤ i ≤ n; X)‖∞ ³ sup
‖x∗‖≤1

‖Average (x∗ (xi) | 1 ≤ i ≤ n)‖1
³ 2n sup

‖x∗‖≤1

‖(x∗ (xi) | 1 ≤ i ≤ n)‖2
= 2nw2 (xi | 1 ≤ i ≤ n; X) . ¤

Notation. Let (Xn)n∈N be a sequence of Banach spaces, (xni)1≤i≤n ⊂ Xn for
each n ∈ N. For each n ∈ N, Average (xni | 1 ≤ i ≤ n; Xn) is an element of
the space X2n

n and we consider the sequence

(∗) (Average (xni | 1 ≤ i ≤ n; Xn))n∈N .

From Lemma 4, the sequence (∗) is an element of the space

(∗∗) c0 (X1, X1, . . . , Xn, . . . , Xn, . . .)

(each Xn appears 2n for each n ∈ N) if and only if w1 (xni | 1 ≤ i ≤ n; Xn) → 0.
In order to avoid unpleasant writings, instead (∗∗) we write simply c0 (Xn |

n ∈ N).
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In the rest of the paper for a natural number k ≥ 2 we denote

bn2 = 2n,

bnk = fk−1 (n)
√

f1 (n) f2 (n) · · · fk−2 (n), if k ≥ 3.

Using the same convention as above, from Lemma 4, the sequence
(Averagek (xni |1 ≤ i ≤ n;Xn))n∈N is an element of the space c0 (Xn | n ∈ N)

if and only if bnkw2 (xi | 1 ≤ i ≤ n; Xn) → 0.

3. The main results

We begin with a well-known fact:

Fact. Let (S, Σ, µ) be a finite measure space, X, Y Banach spaces, g : S →
L (X, Y ) a µ-Bochner integrable function and G : Σ → L (X, Y ),

G (E) =
∫

E

gdµ for E ∈ Σ.

Then

‖g‖Pettis = ‖G‖ (T ) = sup
‖x‖≤1, ‖y∗‖≤1

∫

S

|〈g (s)x, y∗〉| dµ (s) .

This follows from the definition of semivariation and the Pettis norm and
the fact that {x⊗ y∗ | ‖x‖ ≤ 1, ‖y∗‖ ≤ 1} is norming for L (X, Y ).

Proposition 5. Let Ω be a compact Hausdorff space, µ a nonnegative finite
regular Borel measure on Ω, (Xn)n∈N, (Yn)n∈N two sequences of Banach spaces,
gn : Ω → L (Xn, Yn) µ-Bochner integrable functions such that for each E ∈ ΣΩ

∫

E

gndµ → 0 in the operator norm.

Let U : C (Ω) → c0 (L (Xn, Yn) | n ∈ N) be the operator defined by

U (f) =
(∫

Ω

f (ω) gn (ω) dµ (ω)
)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if sup

‖x‖≤1, ‖y∗‖≤1

∫
Ω
|〈gn (ω)x, y∗〉| dµ (ω) → 0.

(iii) U is absolutely summing if and only if
∫
Ω

sup
n∈N

‖gn (ω)‖ dµ (ω) < ∞.

(iv) U is nuclear if and only if U is absolutely summing and ‖gn (ω)‖ → 0
µ-a.e..

Proof. Let Gn : ΣΩ → L (Xn, Yn), Gn (E) =
∫

E
gndµ for E ∈ ΣΩ. The hy-

pothesis and Nikodym’s boundedness theorem, see [3], gives us that the family
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(〈Gnx, y∗〉)‖x‖≤1, ‖y∗‖≤1, n∈N is uniformly bounded, i.e., there exists L > 0 such
that
(1)∫

Ω

|〈gn (ω)x, y∗〉| dµ (ω)= |〈Gnx, y∗〉| (Ω) ≤ L, ∀ ‖x‖ ≤ 1, ‖y∗‖ ≤ 1, n ∈ N.

From hypothesis we get
∫
Ω

f (ω) gn (ω) dµ (ω) → 0 for each simple function
f and from this fact and (1) we deduce

∫
Ω

f (ω) gn (ω) dµ (ω) → 0 for each
f ∈ B (ΣΩ), so U is well defined. The representing measure of U is

G (E) =
(∫

E

gn (ω) dµ (ω)
)

n∈N
, E ∈ ΣΩ

which, by hypothesis, takes its values in c0 (L (Xn, Yn) | n ∈ N) and thus, see
[3, Chapter VI], U is weakly compact.

By [3, Chapter VI], U is compact if and only if the range of G is relatively
norm compact and this by Proposition 1(ii) in [8] is equivalent to ‖gn‖Pettis → 0,
which by Fact gives (ii).

By [3, Chapter VI], U is absolutely summing if and only if G is of bounded
variation, which by Proposition 1(iii) in [8] is equivalent to (iii).

By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and
G has a µ-Bochner integrable derivative, and this by Proposition 1(iv) in [8],
is equivalent to (iv). ¤

In view of Example 3 in [8] it is a natural question to apply average technique
for a triangular matrix of functions. Since by Lemma 4 there is a delineation
between averages of first order and averages of order greater or equal than two,
we analyze these two situations.

Proposition 6. Let Ω be a compact Hausdorff space, µ a nonnegative fi-
nite regular Borel measure on Ω, (Xn)n∈N a sequence of Banach spaces and
(hni)1≤i≤n ⊂ L1 (µ,Xn).

(a) Suppose that

w1

(∫

E

hnidµ | 1 ≤ i ≤ n; Xn

)
→ 0 for each E ∈ ΣΩ.

Let U : C (Ω) → c0 (Xn | n ∈ N) be the operator defined by

U (f) =
(

Average

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if

sup
|εi|≤1

‖hn1ε1 + · · ·+ hnnεn‖Pettis → 0.
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(iii) U is absolutely summing if and only if∫

Ω

sup
n∈N

w1 (hni (ω) | 1 ≤ i ≤ n; Xn) dµ (ω) < ∞.

(iv) U is nuclear if and only if U is absolutely summing and

w1 (hni (ω) | 1 ≤ i ≤ n; Xn) → 0 for µ-a.e. ω ∈ Ω.

(b) Let k ≥ 2 be a natural number. Suppose that

bnkw2

(∫

E

hnidµ | 1 ≤ i ≤ n; Xn

)
→ 0 for each E ∈ ΣΩ.

Let U : C (Ω) → c0 (Xn | n ∈ N) be the operator defined by

U (f) =
(

Averagek

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if

bnk sup
‖ξ‖2≤1

‖hn1ξ1 + · · ·+ hnnξn‖Pettis → 0.

(iii) U is absolutely summing if and only if∫

Ω

sup
n∈N

bnkw2 (hni (ω) | 1 ≤ i ≤ n; Xn) dµ (ω) < ∞.

(iv) U is nuclear if and only if U is absolutely summing and

bnkw2 (hni (ω) | 1 ≤ i ≤ n; Xn) → 0 for µ-a.e. ω ∈ Ω.

Proof. (a) Let gn : Ω → L (X∗
n, ln1 ) be the function defined by

(gn (ω)) (x∗) = (x∗ (hn1 (ω)) , . . . , x∗ (hnn (ω))) for ω ∈ Ω, x∗ ∈ X∗
n

i.e., gn =
n∑

i=1

hni ⊗ eni, and Vn : C (Ω) → L (X∗
n, ln1 )

(Vn (f)) (x∗)=
(∫

Ω

f (ω) x∗ (hn1 (ω)) dµ (ω) , . . . ,

∫

Ω

f (ω)x∗ (hnn (ω)) dµ (ω)
)

.

Observe that
Vn (f) =

∫

Ω

f (ω) gn (ω) dµ (ω) .

Further, because gn is obvious Bochner integrable, by Hille’s theorem, see
[3, Chapter II, Theorem 2.6, p. 47], for each E ∈ ΣΩ, x∗ ∈ X∗

n, we have(∫

E

gn (ω) dµ (ω)
)

(x∗)=
(∫

E

x∗ (hn1 (ω)) dµ (ω) , . . . ,

∫

E

x∗ (hnn (ω)) dµ (ω)
)

and thus∥∥∥∥
∫

E

gn (ω) dµ (ω)
∥∥∥∥

L(X∗
n,ln1 )

= w1

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)
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which, by hypothesis, is convergent to zero. Proposition 5 assures that the
operator V : C (Ω) → c0 (L (X∗

n, ln1 ) | n ∈ N) defined by

V (f) = (Vn (f))n∈N

takes its values in c0 (L (X∗
n, ln1 ) | n ∈ N).

Let f ∈ C (Ω). From Lemma 4 we have

(1)

∥∥∥∥Average

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)∥∥∥∥
∞

³ w1

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)
= ‖Vn (f)‖

and hence U takes its values in c0 (Xn | n ∈ N) if and only if V takes its values
in c0 (L (X∗

n, ln1 ) | n ∈ N), which, as we already proved, is true.
From (1) we deduce

c ‖V (f)‖ ≤ ‖U (f)‖ ≤ C ‖V (f)‖
for some constants c, C > 0 independent of f .

This shows that U is compact (resp. U is absolutely summing) if and only
if V is compact (resp. V is absolutely summing) which by Proposition 5 gives
(ii) and (iii).

Since (i) and (iv) do not follow from Proposition 5, we argue as follows. The
representing measure of U is

G (E) =
(

Average

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

))

n∈N
for E ∈ ΣΩ.

From Lemma 4 and hypothesis, for each E ∈ ΣΩ∥∥∥∥Average

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)∥∥∥∥
∞

³ w1

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)
→ 0,

thus U is weakly compact.
By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and

G has a µ-Bochner integrable derivative, and this, by Proposition 1(iv) in [8],
is equivalent to

‖Average (hni (ω) | 1 ≤ i ≤ n; Xn)‖∞ → 0 for µ-a.e. ω ∈ Ω.

Then (iv) follows, because by Lemma 4, for each ω ∈ Ω

‖Average (hni (ω) | 1 ≤ i ≤ n; Xn)‖∞ ³ w1 (hni (ω) | 1 ≤ i ≤ n; Xn) .

(b) As we will see in the sequel the proof of (b) is similar to that of (a).
Indeed, in this case, let gn : Ω → L (X∗

n, ln2 ) be the function defined by

(gn (ω)) (x∗) = bnk (x∗ (hn1 (ω)) , . . . , x∗ (hnn (ω))) for ω ∈ Ω, x∗ ∈ X∗
n,
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Vn : C (Ω) → L (X∗
n, ln2 ) the operator defined by

(Vn(f)) (x∗)=bnk

(∫

Ω

f (ω) x∗(hn1 (ω)) dµ (ω) , . . . ,

∫

Ω

f (ω) x∗(hnn (ω)) dµ (ω)
)

and observe that

Vn (f) =
∫

Ω

f (ω) gn (ω) dµ (ω) .

Further, because gn is Bochner integrable, as in (a) we deduce that for each
E ∈ ΣΩ∥∥∥∥

∫

E

gn (ω) dµ (ω)
∥∥∥∥

L(X∗
n,ln2 )

= bnkw2

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)

which, by hypothesis, is convergent to zero. Proposition 5 assures that the
operator V : C (Ω) → c0 (L (X∗

n, ln2 ) | n ∈ N) defined by

V (f) = (Vn (f))n∈N

takes its values in c0 (L (X∗
n, ln2 ) | n ∈ N).

Let f ∈ C (Ω). From Lemma 4 we have

(2)

∥∥∥∥Averagek

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)∥∥∥∥
∞

³ bnkw2

(∫

Ω

f (ω)hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)
= ‖Vn (f)‖

and hence U takes its values in c0 (Xn | n ∈ N) if and only if V takes its values
in c0 (L (X∗

n, ln2 ) | n ∈ N), which is true.
From (2) we deduce

c ‖V (f)‖ ≤ ‖U (f)‖ ≤ C ‖V (f)‖
for some constants c, C > 0 independent of f .

This shows that U is compact (resp. U is absolutely summing) if and only
if V is compact (resp. V is absolutely summing) and Proposition 5 gives (ii)
and (iii).

The representing measure of U is

G (E) =
(

Averagek

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

))

n∈N
for E ∈ ΣΩ.

From Lemma 4, for each E ∈ ΣΩ∥∥∥∥Averagek

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)∥∥∥∥
∞

³ bnkw2

(∫

E

hni (ω) dµ (ω) | 1 ≤ i ≤ n; Xn

)
→ 0

by hypothesis, thus U is weakly compact.
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By [3, Chapter VI], U is nuclear if and only if U is absolutely summing and
G has a µ-Bochner integrable derivative, and this by Proposition 1(iv) in [8],
is equivalent to

‖Averagek (hni (ω) | 1 ≤ i ≤ n; Xn)‖∞ → 0 for µ-a.e. ω ∈ Ω.

Then (iv) follows, because by Lemma 4, for each ω ∈ Ω

‖Averagek (hni (ω) | 1 ≤ i ≤ n; Xn)‖∞ ³ bnkw2 (hni (ω) | 1 ≤ i ≤ n; Xn) . ¤
In the next corollary, item (a) is an obvious extension of Example 3 in [8].

In addition to [8], it is natural to study the same problem for averages of order
greater or equal than two, i.e., item (b).

Corollary 7. Let (Xn)n∈N be a sequence of Banach spaces, (xni)1≤i≤n ⊂ Xn.
(a) Suppose supn∈N w2 (xni | 1 ≤ i ≤ n; Xn) < ∞ and let U : C [0, 1] →

c0 (Xn | n ∈ N) be the operator defined by

U (f) =
(

Average

(
xni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; Xn

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if w2 (xni | 1 ≤ i ≤ n; Xn) → 0.
(iii) U is absolutely summing if and only if supn∈N w1 (xni | 1 ≤ i ≤ n; Xn) <

∞.
(iv) U is nuclear if and only if w1 (xni | 1 ≤ i ≤ n; Xn) → 0.

(b) Let k ≥ 2 be a natural number. Suppose supn∈N

(
bnk max

1≤i≤n
‖xni‖

)
< ∞

and let U : C [0, 1] → c0 (Xn | n ∈ N) be the operator defined by

U (f) =
(

Averagek

(
xni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; Xn

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if bnk max

1≤i≤n
‖xni‖ → 0.

(iii) U is absolutely summing if and only if sup
n∈N

bnkw2 (xni | 1 ≤ i ≤ n; Xn) <

∞.
(iv) U is nuclear if and only if bnkw2 (xni | 1 ≤ i ≤ n; Xn) → 0.

Proof. Take hni = xnirn+i ∈ L1 (λ, Xn) in Proposition 6.
(a) For each E ∈ B, by Cauchy-Buniakowski-Schwartz’s inequality and hy-

pothesis we have

w1

(∫

E

xnirn+i (t) dt | 1 ≤ i ≤ n; Xn

)

= sup
‖x∗‖≤1

(
|x∗ (xn1)|

∣∣∣∣
∫

E

rn+1 (t) dt

∣∣∣∣ + · · ·+ |x∗ (xnn)|
∣∣∣∣
∫

E

r2n (t) dt

∣∣∣∣
)
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≤ w2 (xni | 1 ≤ i ≤ n; Xn)

(∣∣∣∣
∫

E

rn+1 (t) dt

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∫

E

r2n (t) dt

∣∣∣∣
2
) 1

2

→ 0.

(i) follows from Proposition 6(a)(i).
From the definition of Pettis norm and Khinchin’s inequality we get

sup
|εi|≤1

‖xn1rn+1ε1 + · · ·+ xnnr2nεn‖Pettis ³ w2 (xni | 1 ≤ i ≤ n; Xn)

and (ii) follows from Proposition 6(a)(ii).
Further for each t ∈ [0, 1], |rn (t)| = 1,

w1 (xnirn+i (t) | 1 ≤ i ≤ n; Xn) = w1 (xni | 1 ≤ i ≤ n; Xn)

and (iii), (iv) follow from Proposition 6(a)(iii), (iv).
(b) We observe that the hypothesis in Proposition 6(b) are satisfies because,

in our hypothesis, for each E ∈ B

bnkw2

(
xni

∫

E

rn+i (t) dt | 1 ≤ i ≤ n; Xn

)

= bnk sup
‖x∗‖≤1

(
|x∗ (xn1)|2

∣∣∣∣
∫

E

rn+1 (t) dt

∣∣∣∣
2

+ · · ·+ |x∗ (xnn)|2
∣∣∣∣
∫

E

r2n (t) dt

∣∣∣∣
2
) 1

2

≤
(

bnk max
1≤i≤n

‖xni‖
) (∣∣∣∣

∫

E

rn+1 (t) dt

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∫

E

r2n (t) dt

∣∣∣∣
2
) 1

2

→ 0.

(i) follows from Proposition 6(b)(i). From the definition of Pettis norm,
Khinchin’s inequality and Result we get

sup
‖ξ‖2≤1

‖xn1rn+1ξ1 + · · ·+ xnnr2nξn‖Pettis

³ sup
‖x∗‖≤1

sup
‖ξ‖2≤1

‖(ξ1x
∗ (xn1) , . . . , ξnx∗ (xnn))‖2

= sup
‖x∗‖≤1

‖(x∗ (xn1) , . . . , x∗ (xnn))‖∞
= max

1≤i≤n
sup

‖x∗‖≤1

|x∗ (xni)|

= max
1≤i≤n

‖xni‖ .

From Proposition 6(b)(ii) we get (ii).
(iii), (iv) follow from Proposition 6(b)(iii), (iv), because for each t ∈ [0, 1]

w2 (xnirn+i (t) | 1 ≤ i ≤ n; Xn) = w2 (xni | 1 ≤ i ≤ n; Xn) . ¤

Remark. As in the proof of Example 3 in [8], it can be proved that for the
operator U defined as in Corollary 7, either U is absolutely summing, or its
representing measure is of everywhere infinite variation, see [4].
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4. The examples

In our examples, in view of Corollary 7, we need the following well-known
result. For the sake of completeness we include a short proof.

Proposition 8. (i) Let X be a Banach space, A ⊂ BX∗ norming for X,
(xi)1≤i≤n ⊂ X and 1 ≤ p < ∞. Then

wp (xi | 1 ≤ i ≤ n; X) = sup
x∗∈A

‖(x∗ (x1) , . . . , x∗ (xn))‖p .

(ii) Let Ω be a compact Hausdorff space, (fi)1≤i≤n ⊂ C (Ω), f : Ω → Kn,
f (ω) = (f1 (ω) , . . . , fn (ω)) and 1 ≤ p < ∞. Then

wp (fi | 1 ≤ i ≤ n; C (Ω)) = ‖f‖C(Ω,lnp ) .

(iii) Let X, Y be Banach spaces, U ∈ L (X,Y ), M > 0 such that ‖x‖ ≤
‖U (x)‖ ≤ M ‖x‖ for any x ∈ X. Let (xi)1≤i≤n ⊂ X and 1 ≤ p < ∞. Then

wp (xi | 1 ≤ i ≤ n; X) ≤ wp (U (xi) | 1 ≤ i ≤ n; Y )

≤ Mwp (xi | 1 ≤ i ≤ n; X) .

(iv) Let 1 ≤ r < ∞, 1 ≤ p ≤ ∞, λ = (λ1, . . . , λn) ∈ Kn. Then

wr

(
λieni | 1 ≤ i ≤ n ; lnp

)
=

∥∥Mλ : lnr∗ → lnp
∥∥ = ‖λ‖∞ if p ≥ r∗,

or ‖λ‖s if p < r∗, where 1
r = 1− 1

p + 1
s .

(v) Let 1 ≤ p < ∞, xi = (xi1, . . . , xin) ∈ Kn, βj = (x1j , . . . , xnj) and
β = (β1, . . . , βn). Then

wp (xi | 1 ≤ i ≤ n; ln∞) = ‖β‖ln∞(lnp ) .

(vi) Let 1 ≤ p, r < ∞ and λ = (λ1, . . . , λn) ∈ Kn. Then

wr (λiri | 1 ≤ i ≤ n; Lp [0, 1]) ³ ‖λ‖∞ if 2 ≤ r,

or ‖λ‖s if 1 ≤ r < 2, where 1
s = 1

r − 1
2 .

(vii) Let (S, Σ, µ) be a measure space, {E1, . . . , En} ⊂ Σ pairwise disjoint
with µ (Ei) < ∞ for each 1 ≤ i ≤ n, 1 ≤ p, r < ∞. Then

wr

(
λiχEi

| 1 ≤ i ≤ n; Lp (µ)
)

= max
1≤i≤n

(
|λi| [µ (Ei)]

1
p

)
if r∗ ≤ p,

or
(

n∑
i=1

|λi|s [µ (Ei)]
s
p

) 1
s

if r∗ > p, where 1
p = 1

r∗ + 1
s .

(viii) Let (S, Σ, µ) be a measure space, 1 ≤ r < ∞, (gi)1≤i≤n ⊂ L∞ (µ),
g : S → Kn, g (s) = (g1 (s) , . . . , gn (s)). Then

wr (gi | 1 ≤ i ≤ n; L∞ (µ)) = ‖g‖L∞(µ,lnr ) .

(ix) Let (S, Σ, µ) be a finite measure space, 1 ≤ r < ∞, (gi)1≤i≤n ⊂ L1 (µ)
such that each gi takes positive values. Then

wr (gi | 1 ≤ i ≤ n; L1 (µ)) =
∥∥∥∥
(∫

S

g1dµ, . . . ,

∫

S

gndµ

)∥∥∥∥
r

.
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(x) Let (S, Ξ, ν) be a finite measure space, 1 ≤ r < ∞, (gi)1≤i≤n ⊂ L1 (ν)
and g : S → Kn defined by g (s) = (g1 (s) , . . . , gn (s)). Then

w1 (rigi | 1 ≤ i ≤ n; L1 (λ⊗ ν)) ³
∫

S

‖g (s)‖2 dν (s)

and if r > 1

wr (rigi | 1 ≤ i ≤ n; L1 (λ⊗ ν)) ³ sup
β∈ln

r∗ ,‖β‖r∗≤1

∫

S

‖Mβ (g (s))‖2 dν (s) .

(xi) Let (S, Ξ, ν) be a finite measure space, 1 ≤ r < ∞, (Ei)1≤i≤n ⊂ Ξ a
partition of S, (ai)1≤i≤n ⊂ K. Then

wr

(
airiχEi

| 1 ≤ i ≤ n; L1 (λ⊗ ν)
) ³ ‖(a1ν (E1) , . . . , anν (En))‖r .

Proof. (i) See [6, Lemma 1.1.15, p. 40] where the proof use the equality

(1) wp (xi | 1 ≤ i ≤ n; X) = sup
‖λ‖p∗≤1

‖λ1x1 + · · ·+ λnxn‖ .

(ii) See [6, Example 1.1.16, p. 40]; it is a particular case of (i), {δω | ω ∈ Ω}
being norming for C (Ω).

(iii) and (iv) follow from hypothesis and (1).
(v) By (1) we have

wp (xi | 1 ≤ i ≤ n; ln∞) = sup
‖λ‖p∗≤1

‖λ1x1 + · · ·+ λnxn‖∞

= sup
‖λ‖p∗≤1

max
1≤j≤n

|λ1x1j + · · ·+ λnxnj |

= max
1≤j≤n

‖(x1j , . . . , xnj)‖p = ‖β‖ln∞(lnp ) .

(vi) From (1) and Khinchin’s inequality

wr (λiri | 1 ≤ i ≤ n; Lp [0, 1]) = sup
β∈ln

r∗ , ‖β‖≤1

∥∥∥∥∥
n∑

i=1

λiβiri

∥∥∥∥∥
Lp[0,1]

³ sup
β∈ln

r∗ ,‖β‖≤1

(
n∑

i=1

|λiβi|2
) 1

2

= ‖Mλ : lnr∗ → ln2 ‖ .

The assertion follows from well-known formula of the norm of the multipli-
cation operator.

(vii) Again (1) gives

wr

(
λiχEi

| 1 ≤ i ≤ n; Lp (µ)
)

= sup
β∈ln

r∗ ,‖β‖≤1

∥∥∥∥∥
n∑

i=1

λiβiχEi

∥∥∥∥∥
Lp(µ)
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= sup
β∈ln

r∗ , ‖β‖≤1

(
n∑

i=1

|λiβi|p µ (Ei)

) 1
p

=
∥∥Mν : lnr∗ → lnp

∥∥ ,

where ν =
(
λ1 [µ (E1)]

1
p , . . . , λn [µ (En)]

1
p

)
. We use again the norm of the

multiplication operator.
(viii) See [6, Example 1.1.17, p. 40].
(ix) By (1) we have

wr (gi | 1 ≤ i ≤ n; L1 (µ)) = sup
‖β‖r∗≤1

∫

S

∣∣∣∣∣
n∑

i=1

βigi

∣∣∣∣∣ dµ.

For each ‖β‖r∗ ≤ 1 we have∣∣∣∣∣
n∑

i=1

βi

∫

S

gidµ

∣∣∣∣∣ ≤
∫

S

∣∣∣∣∣
n∑

i=1

βigi

∣∣∣∣∣ dµ

and from here, by Hölder’s inequality∥∥∥∥
(∫

S

g1dµ, . . . ,

∫

S

gndµ

)∥∥∥∥
r

≤ wr (gi | 1 ≤ i ≤ n; L1 (µ)) .

For the right inequality, from
∫

S

∣∣∣∣
n∑

i=1

βigi

∣∣∣∣ dµ ≤
n∑

i=1

|βi|
∫

S
|gi| dµ, Hölder’s

inequality gives

wr (gi | 1 ≤ i ≤ n; L1 (µ)) ≤
∥∥∥∥
(∫

S

|g1| dµ, . . . ,

∫

S

|gn| dµ

)∥∥∥∥
r

.

Because each gi takes positive values the statement follows.
(x) By (1)

wr (rigi | 1 ≤ i ≤ n; L1 (λ⊗ ν)) = sup
‖β‖r∗≤1

∫

[0,1]×S

∣∣∣∣∣
n∑

i=1

βiri (t) gi (s)

∣∣∣∣∣ dtdν (s) .

The Fubini theorem gives
∫

[0,1]×S

∣∣∣∣∣
n∑

i=1

βiri (t) gi (s)

∣∣∣∣∣ dtdν (s) =
∫

S

(∫ 1

0

∣∣∣∣∣
n∑

i=1

βiri (t) gi (s)

∣∣∣∣∣ dt

)
dν (s) .

Since for each s ∈ S, by Khinchin’s inequality,
∫ 1

0

∣∣∣∣∣
n∑

i=1

βiri (t) gi (s)

∣∣∣∣∣ dt ³
√
|β1|2 |g1 (s)|2 + · · ·+ |βn|2 |gn (s)|2

by integration we obtain

wr (rigi | 1 ≤ i ≤ n ;L1 (λ⊗ ν)) ³ sup
‖β‖r∗≤1

∫

S

‖Mβ (g (s))‖2 dν (s) .

In case r = 1, we have sup‖β‖∞≤1

∫
S
‖Mβ (g (s))‖2 dν (s) =

∫
S
‖g (s)‖2 dν (s)

and the statement follows.
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(xi) is a particular case of (x). In this situation g : S → Kn is defined by
g (s) =

(
a1χE1

(s) , . . . , anχEn
(s)

)
. In case r = 1, since (Ei)1≤i≤n is a partition

of S, ‖g (s)‖2 = |a1|χE1
(s) + · · · + |an|χEn

(s) and the statement follows. In
case r > 1, for each β ∈ lnr∗ ,

‖Mβ (g (s))‖2 = |a1| |β1|χE1
(s) + · · ·+ |an| |βn|χEn

(s)

and thus by (x)

wr

(
airiχEi

| 1 ≤ i ≤ n; L1 (λ⊗ ν)
)

³ sup
β∈ln

r∗ ,‖β‖r∗≤1

(
n∑

i=1

|ai| |βi| ν (Ei)

)
= ‖(a1ν (E1) , . . . , anν (En))‖r .

In the next example item (a) is a natural extension of Example 3 in [8]; for
Ωn = {1}, a singleton, C (Ωn) = K. Further, item (b) is a natural completion
of the same example. The proof follows from Corollary 7 and Proposition 8(ii).

¤
Example 9. Let (Ωn)n∈N be a sequence of compact Hausdorff spaces,

(ϕni)1≤i≤n ⊂ C (Ωn) , ϕn : Ωn → Kn, ϕn (ω) = (ϕn1 (ω) , . . . , ϕnn (ω)) .

(a) Denote ϕ = (ϕn)n∈N and suppose that ϕ ∈ l∞ (C (Ωn, ln2 ) | n ∈ N). Let
U : C [0, 1] → c0 (C (Ωn) | n ∈ N) be the operator defined by

U (f) =
(

Average

(
ϕni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; C (Ωn)
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if ϕ ∈ c0 (C (Ωn, ln2 ) | n ∈ N).
(iii) U is absolutely summing if and only if ϕ ∈ l∞ (C (Ωn, ln1 ) | n ∈ N).
(iv) U is nuclear if and only if ϕ ∈ c0 (C (Ωn, ln1 ) | n ∈ N).
(aa) Let k ≥ 2 be a natural number. Denote ϕmod = (bnkϕn)n∈N and sup-

pose that ϕmod ∈ l∞ (C (Ωn, ln∞) | n ∈ N). Let U : C [0, 1] → c0 (C (Ωn) | n ∈ N)
be the operator defined by

U (f) =
(

Averagek

(
ϕni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; C (Ωn)
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if ϕmod ∈ c0 (C (Ωn, ln∞) | n ∈ N).
(iii) U is absolutely summing if and only if ϕmod ∈ l∞ (C (Ωn, ln2 ) | n ∈ N).
(iv) U is nuclear if and only if ϕmod ∈ c0 (C (Ωn, ln2 ) | n ∈ N).

To avoid repetitions in Examples 10, 13-16, if (αni)1≤i≤n,n∈N is a triangular
matrix of scalars, which in the statement of these examples will be written as
(αni)i,n, we denote αn = (αn1, . . . , αnn), α = (αn)n∈N and αmod = (bnkαn)n∈N
for a natural number k ≥ 2.
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Also, in Examples 13(c), 14(c), 15(cc), if (αnij)1≤i≤n,1≤j≤n,n∈N ⊂ K, which
in the statement of these examples will be written as (αnij)i,j,n, we denote
βnj = (αn1j , . . . , αnnj), βn = (βn1, . . . , βnn), β = (βn)n∈N and βmod =
(bnkβn)n∈N for a natural number k ≥ 2.

The proof of the next example in case 1 ≤ p < ∞ (resp. p = ∞) follows
from Corollary 7 and Proposition 8(vi) (resp. (viii)).

Example 10. (a) Let 1 ≤ p < ∞, (αni)i,n be such that α ∈ l∞ (ln∞ | n ∈ N)
and U : C [0, 1] → c0 (Lp [0, 1])

U (f) =
(

Average

(
αniri

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; Lp [0, 1]
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if α ∈ c0 (ln∞ | n ∈ N).
(iii) U is absolutely summing if and only if α ∈ l∞ (ln2 | n ∈ N).
(iv) U is nuclear if and only if α ∈ c0 (ln2 | n ∈ N).
(aa) Let k ≥ 2 be a natural number, 1 ≤ p < ∞, (αni)i,n such that αmod ∈

l∞ (ln∞ | n ∈ N) and U : C [0, 1] → c0 (Lp [0, 1])

U (f) =
(

Averagek

(
αniri

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; Lp [0, 1]
))

n∈N
.

Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if αmod ∈ c0 (ln∞ | n ∈ N).

(b) Let (αni)i,n be such that α∈ l∞ (ln2 |n ∈ N) and U :C [0, 1]→ c0 (L∞ [0, 1])
the operator defined by

U (f) =
(

Average

(
αniri

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; L∞ [0, 1]
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if α ∈ c0 (ln2 | n ∈ N).
(iii) U is absolutely summing if and only if α ∈ l∞ (ln1 | n ∈ N).
(iv) U is nuclear if and only if α ∈ c0 (ln1 | n ∈ N).
(bb) Let k ≥ 2 be a natural number, (αni)i,n such that αmod∈ l∞ (ln∞ |n ∈ N)

and U : C [0, 1] → c0 (L∞ [0, 1])

U (f) =
(

Averagek

(
αniri

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; L∞ [0, 1]
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if αmod ∈ c0 (ln∞ | n ∈ N).
(iii) U is absolutely summing if and only if αmod ∈ l∞ (ln2 | n ∈ N).
(iv) U is nuclear if and only if αmod ∈ c0 (ln2 | n ∈ N).
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The next example is a natural extension of Example 10(b), (bb). The proof
follows from Corollary 7 and Proposition 8(viii). We remark that in the next
example, if:

1) Sn = [0, 1], µn = λ and all (gni)1≤i≤n,n∈N ⊂ L∞ (µn) are continuous,
then we must replace L∞ (µn, ·) with C ([0, 1] , ·).

2) Sn = [0, 1], µn = λ and gni = αniri we get Example 10(b), (bb).

Example 11. Let (Sn,Σn, µn)n∈N be a sequence of finite measure spaces,

(gni)1≤i≤n,n∈N ⊂ L∞ (µn) , gn : Ωn → Kn, gn = (gn1, . . . , gnn) .

(a) Denote g = (gn)n∈N and suppose that g ∈ l∞ (L∞ (µn, ln2 ) | n ∈ N).
Let U : C [0, 1] → c0 (L∞ (µn) | n ∈ N) be the operator defined by

U (f) =
(

Average

(
gni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; L∞ (µn)
))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if g ∈ c0 (L∞ (µn, ln2 ) | n ∈ N).
(iii) U is absolutely summing if and only if g ∈ l∞ (L∞ (µn, ln1 ) | n ∈ N).
(iv) U is nuclear if and only if g ∈ c0 (L∞ (µn, ln1 ) | n ∈ N).
(aa) Let k ≥ 2 be a natural number and denote gmod = (bnkgn)n∈N. Suppose

that gmod ∈ l∞ (L∞ (µn, ln∞) | n ∈ N) and let U : C [0, 1] → c0 (L∞ (µn) | n ∈ N)
be the operator defined by

U (f) =
(

Averagek

(
gni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L∞ (µn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if gmod ∈ c0 (L∞ (µn, ln∞) | n ∈ N).
(iii) U is absolutely summing if and only if gmod ∈ l∞ (L∞ (µn, ln2 ) | n ∈ N).
(iv) U is nuclear if and only if gmod ∈ c0 (L∞ (µn, ln2 ) | n ∈ N).

The proof of the next example follows from Corollary 7 and Proposition 8(ix).

Example 12. Let (Sn,Σn, µn)n∈N be a sequence of finite measure spaces,

(gni)1≤i≤n,n∈N ⊂ L1 (µn) .

(a) Denote βn =
(∫

S
gn1dµn, . . . ,

∫
S

gnndµn

)
, β = (βn)n∈N, suppose that

each gni takes positive values and β ∈ l∞ (ln2 | n ∈ N).
Let U : C [0, 1] → c0 (L1 (µn) | n ∈ N) be the operator defined by

U (f) =
(

Average

(
gni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L1 (µn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if β ∈ c0 (ln2 | n ∈ N).
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(iii) U is absolutely summing if and only if β ∈ l∞ (ln1 | n ∈ N).
(iv) U is nuclear if and only if β ∈ c0 (ln1 | n ∈ N).
(aa) Let k ≥ 2 be a natural number. Denote

βn =
(∫

S

|gn1| dµn, . . . ,

∫

S

|gnn| dµn

)
,

βmod = (bnkβn)n∈N and suppose that βmod ∈ l∞ (ln∞ | n ∈ N).
Let U : C [0, 1] → c0 (L1 (µn) | n ∈ N) be the operator defined by

U (f) =
(

Averagek

(
gni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L1 (µn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if βmod ∈ c0 (ln∞ | n ∈ N).
(iii) If, in addition, each gni takes positive values, U is absolutely summing

if and only if βmod ∈ l∞ (ln2 | n ∈ N).
(iv) If, in addition, each gni takes positive values, U is nuclear if and only if

βmod ∈ c0 (ln2 | n ∈ N).

In the rest of the paper, if 1 ≤ p < 2 define r by 1
p = 1

2 + 1
r . The proof of

the next example follows from Corollary 7 and Proposition 8(iv) and (v).

Example 13. (a) Let (αni)i,n be such that α ∈ l∞ (lnr | n ∈ N) if 1 ≤ p < 2,
or α ∈ l∞ (ln∞ | n ∈ N) if 2 ≤ p and U : C [0, 1] → c0

(
lnp | n ∈ N

)

U (f) =
(

Average

(
αnieni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; lnp

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if α ∈ c0 (lnr | n ∈ N) for 1 ≤ p < 2, or α ∈

c0 (ln∞ | n ∈ N) for 2 ≤ p.
(iii) U is absolutely summing if and only if α ∈ l∞

(
lnp | n ∈ N

)
.

(iv) U is nuclear if and only if α ∈ c0

(
lnp | n ∈ N

)
.

(b) Let (αni)i,n be such that α ∈ l∞(ln∞ | n ∈ N) and U : C [0, 1] →
c0 (ln∞ | n ∈ N) the operator defined by

U (f) =
(

Average

(
αnieni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; ln∞

))

n∈N
.

Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if α ∈ c0 (ln∞ | n ∈ N).

(c) Let (αnij)i,j,n be such that β ∈ l∞ (ln∞ (ln2 ) | n ∈ N) and U : C [0, 1] →
c0 (ln∞ | n ∈ N) the operator defined by

U (f)=
(

Average

(
(αni1en1 + · · ·+ αninenn)

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; ln∞

))

n∈N
.
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Then
(i) U is weakly compact.
(ii) U is compact if and only if β ∈ c0 (ln∞ (ln2 ) | n ∈ N).
(iii) U is absolutely summing if and only if β ∈ l∞ (ln∞ (ln1 ) | n ∈ N).
(iv) U is nuclear if and only if β ∈ c0 (ln∞ (ln1 ) | n ∈ N).

The next example is a natural completion of Example 13. The proof follows
from Corollary 7 and Proposition 8(iv) and (v).

Example 14. (a) Let k ≥ 2 be a natural number, 1 ≤ p < ∞, (αni)i,n such
that αmod ∈ l∞ (ln∞ | n ∈ N) and U : C [0, 1] → c0

(
lnp | n ∈ N

)

U (f) =
(

Averagek

(
αnieni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; lnp

) )

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if αmod ∈ c0 (ln∞ | n ∈ N).
(iii) for p ≥ 2, U is absolutely summing; for 1 ≤ p < 2, U is absolutely

summing if and only if αmod ∈ l∞ (lnr | n ∈ N).
(iv) for p ≥ 2, U is nuclear if and only if U is compact if and only if αmod ∈

c0 (ln∞ | n ∈ N); for 1 ≤ p < 2, U is nuclear if and only if αmod ∈ c0 (lnr | n ∈ N).
(b) Let k ≥ 2 be a natural number, (αni)i,n such that αmod ∈ l∞ (ln∞ | n ∈ N)

and U : C [0, 1] → c0 (ln∞ | n ∈ N)

U (f) =
(

Averagek

(
αnieni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; ln∞

))

n∈N
.

Then U is absolutely summing; U is compact if and only if U is nuclear if and
only if αmod ∈ c0 (ln∞ | n ∈ N).

(c) Let k ≥ 2 be a natural number, (αnij)i,j,n such that βmod ∈ l∞(ln∞ (ln∞) |
n ∈ N) and U : C [0, 1] → c0 (ln∞ | n ∈ N)

U (f)=
(
Averagek

(
(αni1en1 + · · ·+ αninenn)

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n; ln∞

))

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if βmod ∈ c0 (ln∞ (ln∞) | n ∈ N).
(iii) U is absolutely summing if and only if βmod ∈ l∞ (ln∞ (ln2 ) | n ∈ N).
(iv) U is nuclear if and only if βmod ∈ c0 (ln∞ (ln2 ) | n ∈ N).

The Examples 13 and 14 can be extended to a more general situation. For
this we recall, that if 1 ≤ p ≤ ∞, a Banach space X contains lnp ’s uniformly if
and only if there exists λ ≥ 1 such that for each n ∈ N there exists a bounded
linear operator J : lnp → X such that

(∗) ‖ξ‖p ≤ ‖J (ξ)‖X ≤ λ ‖ξ‖p , ∀ξ ∈ lnp .
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A deep result of Krivine’s, see [7, p. 233], asserts that a Banach space X
contains lnp ’s uniformly if and only if for all λ > 1, all n ∈ N there exists a
bounded linear operator J : lnp → X such that

‖ξ‖p ≤ ‖J (ξ)‖X ≤ λ ‖ξ‖p ,∀ξ ∈ lnp .

For example, from Khinchin’s inequality it follows that for each 1 ≤ p < ∞,
Lp [0, 1] contains ln2 ’s uniformly, thus Example 10(a), (aa) is a particular case
of next example.

From [1, Exercise 8.18(a), p. 107] it follows that L∞ [0, 1] contains ln1 ’s uni-
formly, thus Example 10(b), (bb) is also a particular case of next example.

In the statement of the next example we will use the operator J which occur
in (∗).
Example 15. (a) Let 1 ≤ p < ∞, X be a Banach space which contains
lnp ’s uniformly, (αni)i,n such that α ∈ l∞ (lnr | n ∈ N) if 1 ≤ p < 2, or α ∈
l∞ (ln∞ | n ∈ N) if 2 ≤ p. Let Uα : C [0, 1] → c0 (X) be the operator defined by

Uα (f) =
(

Average

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is weakly compact.
(ii) Uα is compact if and only if α ∈ c0 (lnr | n ∈ N) if 1 ≤ p < 2, or α ∈

c0 (ln∞ | n ∈ N) if 2 ≤ p.
(iii) Uα is absolutely summing if and only if α ∈ l∞

(
lnp | n ∈ N

)
.

(iv) Uα is nuclear if and only if α ∈ c0

(
lnp | n ∈ N

)
.

(b) Let X be a Banach space which contains ln∞’s uniformly, (αni)i,n such
that α ∈ l∞ (ln∞ | n ∈ N). Let Uα : C [0, 1] → c0 (X) be the operator defined by

Uα (f) =
(

Average

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is absolutely summing.
(ii) Uα is compact if and only if Uα is nuclear if and only if α ∈ c0 (ln∞ | n ∈ N).
(c) Let X be a Banach space which contains ln∞’s uniformly, (αnij)i,j,n such

that β ∈ l∞ (ln∞ (ln2 ) | n ∈ N) and for each natural number n denote

xni = αni1J (en1) + αni2J (en2) + · · ·+ αninJ (enn) .

Let Uβ : C [0, 1] → c0 (X) be the operator defined by

Uβ (f) =
(

Average

(
xni

∫ 1

0

f (t) rn+i (t) dt) | 1 ≤ i ≤ n

))

n∈N
.

Then
(i) Uβ is weakly compact.
(ii) Uβ is compact if and only if β ∈ c0 (ln∞ (ln2 ) | n ∈ N).
(iii) Uβ is absolutely summing if and only if β ∈ l∞ (ln∞ (ln1 ) | n ∈ N).
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(iv) Uβ is nuclear if and only if β ∈ c0 (ln∞ (ln1 ) | n ∈ N).
(aa) Let k ≥ 2 be a natural number, 1 ≤ p < ∞, X a Banach space which

contains lnp ’s uniformly, (αni)i,n such that αmod ∈ l∞ (ln∞ | n ∈ N).
Let Uα : C [0, 1] → c0 (X) be the operator defined by

Uα (f) =
(

Averagek

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is weakly compact.
(ii) Uα is compact if and only if αmod ∈ c0 (ln∞ | n ∈ N).
(iii) for p ≥ 2, Uα is absolutely summing; for 1 ≤ p < 2, U is absolutely

summing if and only if αmod ∈ l∞ (lnr | n ∈ N).
(iv) for p ≥ 2, Uα is nuclear if and only if Uα is compact if and only if

αmod ∈ c0 (ln∞ | n ∈ N); for 1 ≤ p < 2, Uα is nuclear if and only if αmod ∈
c0 (lnr | n ∈ N).

(bb) Let k ≥ 2 be a natural number, X a Banach space which contains ln∞’s
uniformly, (αni)i,n such that αmod ∈ l∞ (ln∞ | n ∈ N). Let Uα : C [0, 1] → c0 (X)
be the operator defined by

Uα (f) =
(

Averagek

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is absolutely summing.
(ii) Uα is compact if and only if Uα is nuclear if and only if αmod ∈ c0(ln∞ | n

∈ N).
(cc) Let k ≥ 2 be a natural number, X a Banach space which contains

ln∞’s uniformly, (αnij)i,j,n such that βmod ∈ l∞ (ln∞ (ln∞) | n ∈ N) and for each
natural number n denote

xni = αni1J (en1) + αni2J (en2) + · · ·+ αninJ (enn) .

Let Uβ : C [0, 1] → c0 (X) be the operator defined by

Uβ (f) =
(

Averagek

(
xni

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uβ is weakly compact.
(ii) Uβ is compact if and only if βmod ∈ c0 (ln∞ (ln∞) | n ∈ N).
(iii) Uβ is absolutely summing if and only if βmod ∈ l∞ (ln∞ (ln2 ) | n ∈ N).
(iv) Uβ is nuclear if and only if βmod ∈ c0 (ln∞ (ln2 ) | n ∈ N).

Proof. (a) From Corollary 7(a), Uα is weakly compact and further Uα is com-
pact if and only if w2 (αniJ (eni) | 1 ≤ i ≤ n) → 0;

Uα is absolutely summing if and only if sup
n∈N

w1 (αniJ (eni) | 1 ≤ i ≤ n) < ∞;

Uα is nuclear if and only if w1 (αniJ (eni) | 1 ≤ i ≤ n) → 0.
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From (∗) and Proposition 8(iii) and (iv) the statement follows.
(aa) The proof is similar to that of (a) and use Corollary 7(b). We omit the

details. The proofs of (b), (bb) and (c), (cc) are also similar to that of (a). We
prove now (c).

From Corollary 7(a) Uβ is weakly compact and further
Uβ is compact if and only if w2 (xni | 1 ≤ i ≤ n) → 0;
Uβ is absolutely summing if and only if sup

n∈N
w1 (xni | 1 ≤ i ≤ n) < ∞;

Uβ is nuclear if and only if w1 (xni | 1 ≤ i ≤ n) → 0.
From (∗) an Proposition 8(iii) and (v) we get the statement.
Since, by the famous Dvoretzky theorem, see [2, Chapter 19], each infinite

dimensional Banach space contains ln2 ’s uniformly, i.e., ∀ε > 0, ∀n ∈ N there
exists a bounded linear operator J : ln2 → X such that

(∗∗) ‖ξ‖2 ≤ ‖J (ξ)‖X ≤ (1 + ε) ‖ξ‖2 , ∀ξ ∈ ln2

from Example 15(a), (aa) we get the next example; we use in the statement of
this example the operator J from (∗∗). ¤
Example 16. Let X be an infinite dimensional Banach space and (αni)i,n.

(a) If α ∈ l∞ (ln∞ | n ∈ N), let Uα : C [0, 1] → c0 (X) be the operator defined
by

Uα (f) =
(

Average

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is weakly compact.
(ii) Uα is compact if and only if α ∈ c0 (ln∞ | n ∈ N).
(iii) Uα is absolutely summing if and only if α ∈ l∞ (ln2 | n ∈ N).
(iv) Uα is nuclear if and only if α ∈ c0 (ln2 | n ∈ N).
(b) If k ≥ 2 is a natural number and αmod ∈ l∞ (ln∞ | n ∈ N), let Uα :

C [0, 1] → c0 (X) be the operator defined by

Uα (f) =
(

Averagek

(
αniJ (eni)

∫ 1

0

f (t) rn+i (t) dt

)
| 1 ≤ i ≤ n

)

n∈N
.

Then
(i) Uα is absolutely summing.
(ii) Uα is nuclear if and only if Uα is compact if and only if αmod ∈ c0(ln∞ | n ∈

N).

The proof of the next example follows from Corollary 7 and Proposition 8(x),
(xi).

Example 17. Let (Sn,Ξn, νn)n∈N be a sequence of finite measure spaces.
(a) Let (gni)1≤i≤n ⊂ L1 (νn), gn = (gn1, . . . , gnn) : Sn → Kn be such that

sup
n∈N

sup
β∈ln2 ,‖β‖2≤1

∫

Sn

‖Mβ (gn (sn))‖2 dνn (sn) < ∞.
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Let U : C [0, 1] → c0 (L1 (λ⊗ νn) | n ∈ N) be the operator defined by

U (f) =
(

Average

(
rigni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L1 (λ⊗ νn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if

sup
β∈ln2 ,‖β‖2≤1

∫

Sn

‖Mβ (gn (sn))‖2 dνn (sn) → 0.

(iii) U is absolutely summing if and only if sup
n∈N

∫
Sn
‖gn (sn)‖2 dνn (sn) < ∞.

(iv) U is nuclear if and only if
∫

Sn
‖gn (sn)‖2 dνn (sn) → 0.

(b) Let (αni)i,n ⊂ K, (Eni)1≤i≤n ⊂ Σn be a partition for Sn,

βn = (αn1νn (En1) , . . . , αnnνn (Enn)) , β = (βn)n∈N

such that β ∈ l∞ (ln2 | n ∈ N).
Let U : C [0, 1] → c0 (L1 (λ⊗ νn) | n ∈ N) be the operator defined by

U (f)=
(

Average

(
αniriχEni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L1 (λ⊗ νn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if β ∈ c0 (ln2 | n ∈ N).
(iii) U is absolutely summing if and only if β ∈ l∞ (ln1 | n ∈ N).
(iv) U is nuclear if and only if β ∈ c0 (ln1 | n ∈ N).
(bb) Let k ≥ 2 be a natural number, (αni)i,n ⊂ K, (Eni)1≤i≤n ⊂ Σn be

a partition for Sn, βn = (αn1νn (En1) , . . . , αnnνn (Enn)), βmod = (bnkβn)n∈N
such that βmod ∈ l∞ (ln∞ | n ∈ N).

Let U : C [0, 1] → c0 (L1 (µ⊗ νn) | n ∈ N) be the operator defined by

U (f)=
(
Averagek

(
αniriχEni

∫ 1

0

f (t) rn+i (t) dt | 1 ≤ i ≤ n

)
; L1 (λ⊗ νn)

)

n∈N
.

Then
(i) U is weakly compact.
(ii) U is compact if and only if βmod ∈ c0 (ln∞ | n ∈ N).
(iii) U is absolutely summing if and only if βmod ∈ l∞ (ln2 | n ∈ N).
(iv) U is nuclear if and only if βmod ∈ c0 (ln2 | n ∈ N).
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