DOI QR코드

DOI QR Code

Tyrosinase Inhibition Activity and Antioxidant Capacity by Fermented Products of Some Medicinal Plants

한방 생약재 발효액의 항산화 활성 및 tyrosinase 저해 활성

  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Yang, Hyun-Ju (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Jeong, Jae-Jun (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Seo, Won-Seok (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Park, Jun-Seok (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Ok, Min (MieV Fermentation Science Research Institute, MieV Co., Ltd.) ;
  • Cho, Young-Su (Department of Biotechnology, Dong-A University)
  • 차재영 (대선주조(주) 기술연구소) ;
  • 양현주 (대선주조(주) 기술연구소) ;
  • 정재준 (대선주조(주) 기술연구소) ;
  • 서원석 (대선주조(주) 기술연구소) ;
  • 박준석 (대선주조(주) 기술연구소) ;
  • 옥민 ((주)미애부 발효과학연구소) ;
  • 조영수 (동아대학교 생명공학과)
  • Received : 2010.04.09
  • Accepted : 2010.05.26
  • Published : 2010.06.30

Abstract

The effects of fermented products from 40 medicinal herbals commonly available in Korea were examined according to concentrations of polyphenolic compound and kojic acid, and the activities of DPPH ($\alpha,\alpha$'-diphenyl-$\beta$-picrylhydrazyl) free radical scavenging and tyrosinase. The polyphenolic compound concentrations were 0.24 by Corydalis turtschaminovill ~ 11.42% (dry matter basis) by Syringa velutina in the extracts and 0.18 by Poria cocos ~ 12.27% by S. velutina in the fermented products. Kojic acid concentrations were 0.02 by Poria cocos Sclerotium ~ 9.67 mM by S. velutina in the extracts and 0.33 by P. cocos ~ 10.32 mM by S. velutina in the fermented products. Syringa velutina contained the highest polyphenolic compound and kojic acid concentrations, which were higher in the fermented product than in the extract. Higher DPPH free radical scavenging activity (>60%) was observed in the extracts of A. sessiliflorum, Citrus nobillis, and Angelica gigas and the fermented product of A. sessiliflorum compared to the other medicinal plants. Higher tyrosinase inhibition activity (>50%) was observed in the extracts of Morus alba, Glycyrrhiza glabra, and Rubus coreanus and the fermented products of G. glabra, Cnidium officinale, and S. velutina. Based on the above results, G. glabra, C. officinale, and S. velutina possessed high tyrosinase-inhibitive activities and kojic acid concentrations, which could be definitely enhanced by the fermentation of Phenillus linteus mycelium.

국내에서 자생하고 있는 한방 생약재의 생리활성 물질을 이용한 기능성 미백 화장품 소재 개발을 위한 기초연구의 일환으로 40종의 한방 생약재 열수 추출물을 상황버섯 균사체로 발효시켜 얻은 발효 한방액의 phenolics, flavonoids, minerals, decursin 및 decursinol angelate 함량과 항산화 및 tyrosinase 저해 활성을 측정 하였다. 페놀성 화합물 함량은 추출물에서 Corydalis turtschaminovill 0.24%~Syringa velutina 11.42% (건물기준) 범위 였으며, 발효 한방액에서는 Poria cocos 0.18%~S. velutina 12.27% 범위였다. 한방 생약재 추출물의 코직산 함량은 Poria cocos Sclerotium 0.02~S. velutina 9.67 mM 범위였으며, 발효액에서는 P. cocos 0.33~S. velutina 10.32 mM 범위였다. 특히 Syringa velutina은 높은 농도의 페놀성 화합물과 코직산을 함유하고 있었는데 추출물 보다는 발효액에서 더 높았다. 높은 항산화 활성(>60%)은 A. sessiliflorum, Citrus nobillis 및 Angelica gigas의 추출물과 A. sessiliflorum의 발효액에서 다른 한방 생약재 보다 높게 나타났다. Tyrosinase의 높은 저해 활성(>50%)은 Morus alba, Glycyrrhiza glabra 및 Rubus coreanus 추출물과 G. glabra, Cnidium officinale 및 S. velutina 발효액에서 높았다. 이상의 실험 결과 40종의 한방 생약재 중에서 G. glabra, C. officinale 및 S. velutina 3종은 발효에 의해 tyrosinase 저해 활성과 코직산이 증가함으로서 이를 활용한 기능성 미백 화장품 개발에 적용할 수 있는 기초 자료를 제공해주는 데 유용하게 사용될 것이다.

Keywords

References

  1. Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biotechnol. Biochem. 62, 661-666. https://doi.org/10.1271/bbb.62.661
  2. Bentley, R. 1957. Preparation and analysis of kojic acid. Meth. Enzymol. 3, 238-241. https://doi.org/10.1016/S0076-6879(57)03381-9
  3. Cabanes, J., S. Chazarra, and F. Garcia-Carmona. 1994. Kojic acid, a cosmetic skin whitening agent, is a slow binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982-985. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  4. Cha, J. Y., H. J. Kim, C. H. Chung, and Y. S. Cho. 1999. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 28, 1310-1315.
  5. Cha, J. Y., H. Y. Ahn, K. E. Eom, B. K. Park, B. S. Jun, and Y. S. Cho. 2009. Antioxidative activity of Aralia elata shoot and leaf extracts. J. Life Sci. 19, 652-658. https://doi.org/10.5352/JLS.2009.19.5.652
  6. Cho, H. O., J. H. Lee, S. H. Cho, and Y. H. Choi. 1976. Approach to the extraction method on minerals of ginseng extract. Korean J. Food Sci. Technol. 8, 95-106.
  7. Choi, U. D., H. Shin, Y. S. Chang, and J. I. Shin. 1992. Screening of natural antioxidant from plant and antioxidant effect. Korean J. Food Sci. Technol. 24, 142-148.
  8. Choi, Y. M., J. B. Gu, M. H. Kim, and J. S. Lee. 2008. Antioxidant and antiproliferative activities of methanolic extracts from thirty Korean medicinal plants. Food Sci. Biotechnol. 17, 1235-1239.
  9. Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42. https://doi.org/10.1002/bimj.19590010102
  10. Hwang, E. Y., Y. H. Kang, Y. C. Lee, Y. C. Kim, Y. C. Kim, K. M. Yoo, Y. O. Jo, and S. Y. Choi. 2006. Comparison of phenolic compounds contents between white and red ginseng and their inhibitory effect on melanin biosynthesis. J. Ginseng Res. 30, 82-87. https://doi.org/10.5142/JGR.2006.30.2.082
  11. Jee, S. O. 2009. Antioxidant activities and whitening effect of the mulberry (Morus alba L.) root bark extracts. Korean J. Plant Res. 22, 145-151.
  12. Jung, A. Y., K. G. Lee, M. J. Kwun, and K. H. Row. 2003. Separation of glabridin from Licorice by RP-HPLC. Korean J. Biotechnol. Bioeng. 18, 408-411.
  13. Jung, S. W., N. K. Lee, S. J. Kim, and D. S. Han. 1995. Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Technol. 27, 891-896.
  14. Kim, C. H., M. C. Kwon, H. G. Han, C. S. Na, H. G. Kwak, G. P. Choi, U. Y. Park, and H. Y. Lee. 2008. Skin-whitening and UV-protective effects of Angelica gigas Nakai extracts on ultra high pressure extraction process. Korean J. Medicinal Crop. Sci. 16, 255-260.
  15. Kim, E. Y., I. H. Baik, J. H. Kim, S. R. Kim, and M. R. Rhyu. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36, 333-338.
  16. Kim, S. J., M. Y. Heo, K. H. Bae, S. S. Kang, and H. P. Kim. 2003. Tyrosinase inhibitory activity of plant extract (III): Fifty Korean indigenous plants. J. Applied Phamacol. 11, 245-248.
  17. Kim, Y. K., Q. Guo, and L. Packer. 2002. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172, 149-156. https://doi.org/10.1016/S0300-483X(01)00585-6
  18. Lee, J. H. and S. R. Lee. 1994. Analysis of phenolic substances content on Korea plant foods. Korean J. Food Sci. Technol. 26, 310-316.
  19. Lee, S., W. G. Kim, E. Kim, I. J. Ryoo, H. K. Lee, J. N. Kim, S. H. Jung, and I. D. Yoo. 2005. Synthesis and melanin biosynthesis inhibitory activity of (+/-)-terrein produced by Penicillium sp. 20135. Bioorg. Med. Chem. Lett. 15, 471-473. https://doi.org/10.1016/j.bmcl.2004.10.057
  20. Masamoto, Y., H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 67, 631-634. https://doi.org/10.1271/bbb.67.631
  21. Mishima, Y., S. Hata, Y. Ohyama, and M. Inazu. 1988. Induction of melanomagenesis suppression cellular pharmacology and mode of differential action. Pigment Cell Res. 1, 367-374. https://doi.org/10.1111/j.1600-0749.1988.tb00136.x
  22. Oh, S. L., S. S. Kim, B. Y. Min, and D. H. Chung. 1990. Composition of free sugars, free amino acids, non-volatile organic acids and tannins in the extracts of L. chinensis M., A. acutiloba K., S. chinesis B. and A. sessiliflorum S. Korean J. Food Sci. Technol. 22, 76-81.
  23. Park, S. S., Y. B. Ryu, Y. H. Lee, Y. U. Cho, S. J. Cho, Y. J. Choi, K. H. Park, and S. W. Gal. 2007. Inhibition of melanin synthesis by mycelial culture broth of Paecilomyces japonica in the mulberry leaf extract. J. Life Sci. 17, 816-821. https://doi.org/10.5352/JLS.2007.17.6.816
  24. Rosfarizan, M. and A. S. Ariff. 2006. Kinetics kojic acid fermentation by Aspergillus flavus link S44-1 using sucrose as a carbon source under different pH conditions. Biotech. Bioprocess Eng. 11, 72-79. https://doi.org/10.1007/BF02931872
  25. Shon, M. Y. 2007. Antioxidant and anticancer activities of Poria cocos and Machilus thunbergii fermented with mycelial mushrooms. Food Indus. Nutr. 12, 51-57.
  26. Sim, G. S., J. H. Kim, B. C. Lee, D. H. Lee, G. S. Lee, and H. B. Pyo. 2008. Inhibitory effects on melanin production in B16 melanoma cells of Sedum sarmentosum. Yakhak Hoeji 52, 165-171.
  27. Swain, T., W. E. Hillis, and M. Oritega. 1959. Phenolic constituents of Ptunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 83-88.
  28. Yoo, J. H., J. Y. Cha, Y. K. Jeong, K. T. Chung, and Y. S. Cho. 2004. Antioxidative effects of pine (Pinus denstifora) needle extracts. J. Life Sci. 14, 863-867. https://doi.org/10.5352/JLS.2004.14.5.863
  29. You, J. K., M. J. Chung, D. J. Kim, D. J. Seo, J. H. Park, T. W. Kim, and M. Choi. 2009. Antioxidant and tyrosinase inhibitory effects of Paeonia suffruticosa water extract. J. Korean Soc. Food Sci. Nutr. 38, 292-296. https://doi.org/10.3746/jkfn.2009.38.3.292
  30. Vile, G. F. and R. M. Tyrrell. 1995. UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblast is dependent on iron and singlet oxygen. Free Radical Biol. Med. 18, 721-725. https://doi.org/10.1016/0891-5849(94)00192-M

Cited by

  1. Biological Activity of Browning Compounds from Processed Garlics Separated by Dialysis Membrane vol.40, pp.3, 2011, https://doi.org/10.3746/jkfn.2011.40.3.357
  2. Neuroprotective activities of fermented Ganoderma lucidum extracts by lactic acid bacteria against H2O2-stimulated oxidative stress in PC12 cells vol.24, pp.4, 2015, https://doi.org/10.1007/s10068-015-0181-1
  3. Anti-melanogenesis in B16F0 Melanoma Cells by Extract of Fermented Cordyceps militaris Containing High Cordycepin vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1516
  4. Biological Activities of Yellow Garlic Extract vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.983
  5. Ingredients Analysis and Biological Activity of Fermented Angelica gigas Nakai by Mold vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1385
  6. Inhibitory effect and mechanism on melanogenesis from fermented herbal composition for medical or food uses vol.45, pp.1, 2012, https://doi.org/10.1016/j.foodres.2011.11.002
  7. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells vol.34, pp.2, 2012, https://doi.org/10.3109/08923973.2011.600764
  8. Antibacterial Activities of Fermented Sayuksan Ingredient Extracts for Multidrug-resistant Strains vol.29, pp.3, 2014, https://doi.org/10.7841/ksbbj.2014.29.3.210
  9. Effects of Fermentation on the Metabolic Activities of Pine Needle Juice vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.325
  10. Biological Activity of Methanolic Extract from Ganoderma lucidum, Momordica charantia, Fagopyrum tataricum, and Their Mixtures vol.21, pp.7, 2011, https://doi.org/10.5352/JLS.2011.21.7.1016
  11. Chemical Characteristics in Fermented Cordycepin-enriched Cordyceps militaris vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.1032
  12. Tyrosinase Inhibitory Activity and Neuronal Cell Protection of Hydrothermal Extracts from Watermelons vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1707
  13. Antioxidative Effect of Seven Fermented Medicinal Herb Mixtures Using in Vitro Assays and Bulk Oil System vol.34, pp.4, 2018, https://doi.org/10.9724/kfcs.2018.34.4.342