DOI QR코드

DOI QR Code

내열성 extracellular lipase 생산을 위한 Geobacillus kaustophilus DSM 7263의 배양조건

Culture Conditions of Geobacillus kaustophilus DSM 7263 for Production of Thermophilic Extracellular Lipase

  • Jeon, Sung-Jong (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Kang, Hyun-Woo (Department of Biotechnology & Bioengineering, Dong-Eui University)
  • 투고 : 2010.03.02
  • 심사 : 2010.03.30
  • 발행 : 2010.06.30

초록

고온성 균주로 알려진 Geobacillus 속의 다양한 균주로부터 내열성 extracellular lipase를 생산하는 G. kaustophilus DSM 7263를 선별하였다. 우리는 본 균주로부터 lipase를 대량생산하기 위한 최적 조건을 조사하였다. 배양 배지에 다양한 천연오일을 첨가한 결과, lipase의 최적 생장을 위한 탄소원으로는 0.5% 올리브 오일이 최적 조건으로 확인되었다. 본 균주의 생장을 위한 최적온도와 pH는 각각 $55^{\circ}C$와 8.0인 반면, lipase 생산을 위한 최적 온도와 pH는 각각 $50^{\circ}C$와 6.0을 나타내어 최적생육조건과는 다른 양상을 나타내었다. 금속이온에 대한 영향에 대해서는 배지에 $Mg^{2+}$$Mn^{2+}$을 첨가한 경우 각각 247%와 157%의 효소 생산이 증가한 반면, $Co^{2+}$, $Fe^{2+}$, $Ni^{2+}$, $Cu^{2+}$는 효소 생산을 저해 하였다. 또한 0.1% (v/v) triton X-100을 첨가하면 대조구에 비해 효소생산과 균의 생장이 모두 증가하는 것으로 나타났다.

A producer of thermophilic extracellular lipase, Geobacillus kaustophilus DSM 7263, was selected from various microorganisms of the Geobacillus genus. We investigated optimum conditions for mass production of G. kaustophilus lipase. Among the different natural oil media, olive oil was optimal for enzyme production. The maximum amount of enzyme production was obtained when G. kaustophilus was grown in a medium containing 0.5% olive oil as a carbon source. The pH and temperature for optimal growth were pH 8.0 and $55^{\circ}C$, respectively, while the optimum pH and temperature for lipase production were pH 6.0 and $50^{\circ}C$, respectively. In the presence of $Mg^{2+}$ and $Mn^{2+}$, lipase production was dramatically enhanced by 247% and 157%, respectively, whereas enzyme production was inhibited by $Zn^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. The addition of 0.1% (v/v) triton X-100 increased lipase production and cell growth when compared to the negative control.

키워드

참고문헌

  1. Alberghina, L., R. D. Schmid, and R. Verger. 1991. Lipases: Structure, Mechanism and Genetic Engineering, Wiley-VCH, Weinheim.
  2. Antonian, E. 1988. Recent advances in the purification, characterization and structure determination of lipases. Lipids 23, 1101-1106. https://doi.org/10.1007/BF02535273
  3. Bornscheuer, U. T. 2000. (Ed.), Enzymes in Lipid Modification, Wiley-VCH, Weinheim.
  4. Brockman, H. W., W. E. Mornsen, and T. Tsuijita. 1988. The biology, biochemistry and biotechnology of lipases. J. Am. Oil Chem. Soc. 65, 891-896. https://doi.org/10.1007/BF02544505
  5. Chung, G. H., Y. P. Lee, G. H. Jeohn, O. J. Yoo, and J. S. Rhee. 1991. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agric. Biol. Chem. 55, 2359-2365. https://doi.org/10.1271/bbb1961.55.2359
  6. Feng, L., W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng, and R. Liu, 2007. Wang L. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. U S A. 104, 5602-5607. https://doi.org/10.1073/pnas.0609650104
  7. Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62, 66-71. https://doi.org/10.1271/bbb.62.66
  8. Kouker, G. and K. E. Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211-213.
  9. Kwon, D. Y. and J. S. Rhee. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. JAOCS 63, 89-92. https://doi.org/10.1007/BF02676129
  10. Li, H. and X. Zhang. 2005. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr. Purif. 42, 153-159. https://doi.org/10.1016/j.pep.2005.03.011
  11. Macrae, A. R. 1983. Extracellular microbial lipases. pp. 225-250, In Fogarty, W. M. (ed.), Microbial enzyme and Biotechnolog. Applied science Publisher Ltd., England,
  12. Mozhaev, V. V., I. V. Berezin, and K. Martinek. 1988. Structure-stability relationship in proteins: Fundamental tasks and strategy for the development of stabilized enzyme catalyst for biotechnology. CRC Crit. Rev. Biochem. 173, 147-154.
  13. Namboodiri, V. M. and R. Chattopadhyaya. 2000. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids 35, 495-502. https://doi.org/10.1007/s11745-000-549-3
  14. Rubin, B. and E. A. Dennis. 1997. Lipases: Part B. Enzyme Characterization and Utilization, Methods in Enzymology 286, 1-563.
  15. Salameh, M. A. and J. Wiegel. 2007. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl. Environ. Microbiol. 73, 7725-7731. https://doi.org/10.1128/AEM.01509-07
  16. Shuen, F. L., C. M. Chiou, and Y. C. Tsai. 1995. Effect of Triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotech. letters. 17, 959-962. https://doi.org/10.1007/BF00127434
  17. Sugihara, A., T. Tani, and Y. Tominaga. 1991. Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109, 211-215.
  18. Stuer, W., K. E. Jaeger, and U. K. Winkler. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol. 168, 1070-1074.
  19. Takami, H., S. Nishi, J. Lu, S. Shimamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8, 351-356 https://doi.org/10.1007/s00792-004-0394-3