DOI QR코드

DOI QR Code

프로스타글란딘 D2와 E2의 생성에 대한 허파 마크로파이지의 역할

Role of Alveolar Macrophages in Productions of Prostaglandin D2 and E2 in the Inflamed Lung

  • 주명수 (부산대학교 한의학전문대학원 응용의학부)
  • Joo, Myung-Soo (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • 투고 : 2010.05.10
  • 심사 : 2010.06.21
  • 발행 : 2010.06.30

초록

프로스타글란딘 D2 (PGD2)와 E2 (PGE2)는 COX-2로부터 유래되는 주요 프로스타노이드로서, 슈도모나스에 의한 폐감염이 발생하였을 경우 폐에서 합성되어 슈도모나스 세균감염을 조절할 수 있음을 밝힌바 있음. 본 연구에서는 두 프로스타노이드의 생성 비율을 조절하는 기전을 연구하고자함. 마크로파아지에 의해 PGD2/PGE2 비율이 결정되는 지 조사하기 위해, 마우스의 허파로부터 마크로파아지를 분리하고 LPS로 처리할 경우, COX-2, PGD2합성 효소인 L-PGDS, PGE2의 합성효소인 mPGES-1 등의 발현이 두 프로스타노이드의 생성 비율에 미치는 영향을 조사하였음. 또한 이 효소들의 발현이 일차 허파 마크로파아지에 특이적인지의 여부를 조사하기 위해, 허파 마트로파이지 세포주인 MH-S와 비교 조사하였음. COX-2가 프로스타글린딘 비율에 미치는 영향을 조사하기 위해, COX-2 특이적 siRNA릉 이용하여 COX-2의 발현을 억제하고 L-PGDS, mPGES-1 등의 발현을 조사하였음. 결과에 따르면, 일차 허파 마트로파아지는 MH-S과는 달리 많은 양의 PGE2를 생성하나, 두 세포간 COX-2, L-PGDS, mPGES-1의 발현에는 큰 차이가 없었음. 이는 이들 효소 외에 다른 인자들이 두 프로스타노이드의 비율을 결정하는데 관여함을 제시함. LPS의 처리에 의해 폐염증을 발생시키고 허파에서의 PGD2/PGE2 비율을 조사한 결과, LPS에 의해 폐염증이 발생할 경우 LPS를 처리한 일차 허파 마크로파아지와 유사하게 PGE2의 발현이 PGD2에 비해 상당히 높았음. 결과적으로 본 연구의 결과는, 허파에서의 PGD2/PGE2 비율은, COX-2, L-PGDS, mPGES-1 등 PGD2나 PGE2의 합성에 직접적인 영향을 주는 효소에 의해 결정되지 않으며, 허파마크로파아지의 PGD2/PGE2 비율을 반영할 가능성을 제시함.

Our previous study showed that lungs infected by Pseudomonas, a gram-negative bacteria, produce prostaglandin $D_2$ ($PGD_2$) and prostaglandin $E_2$ ($PGE_2$), the two major prostanoids generated by cyclooxygenase-2 (COX-2), and that the ratio of $PGD_2$ and $PGE_2$ can affect the outcome of the bacterial lung infection. In this study, we sought to uncover the mechanism that determines the ratio of $PGD_2$ and $PGE_2$ produced in lung inflammation. When treated with lipopolysaccharide (LPS), primary alveolar macrophages, extracted from mouse lung, more $PGE_2$ was produced than $PGD_2$, whereas MH-S, a murine alveolar macrophage cell line, produced more $PGD_2$ than $PGE_2$ in a similar experiment. Western blot analyses showed that the kinetics of COX-2 expression in both cell types is similar and epigenetic silencing of COX-2 expression did not affect expressions of lipocalin-PGD synthase (L-PGDS) and PGE synthase (mPGES-1), major enzymes synthesizing $PGD_2$ and $PGE_2$ in inflammation, respectively, indicating no effect of COX-2 on expressions of the two enzymes. Expressions of L-PGDS and mPGES-1 were also similar in both cell types, suggesting no effect of the two key enzymes in determining the ratio of $PGD_2$ and $PGE_2$ in these cells. A single intraperitoneal injection of LPS to C57BL/6 mice induced COX-2 expression and, similar to alveolar macrophages, produced more $PGE_2$ than $PGD_2$ in the lung. These results suggest that the differential expressions of $PGD_2$ and $PGE_2$ in the lung reflect those in alveolar macrophages and may not be directly determined by the enzymes responsible for $PGD_2$ and $PGE_2$ synthesis.

키워드

참고문헌

  1. Adamo, R., S. Sokol, G. Soong, M. I. Gomez, and A. Prince. 2004. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor. Am. J. Respir. Cell Mol. Biol. 30, 627-634. https://doi.org/10.1165/rcmb.2003-0260OC
  2. Berg, J. T., S. T. Lee, T. Thepen, C. Y. Lee, and M. F. Tsan. 1993. Depletion of alveolar macrophages by liposome-encapsulated dichloromethylene diphosphonate. J. Appl. Physiol. 74, 2812-2819.
  3. Beutler, B., X. Du, and A. Poltorak. 2001. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J. Endotoxin. Res. 7, 277-280. https://doi.org/10.1177/09680519010070040901
  4. Bjorkbacka, H., K. A. Fitzgerald, F. Huet, X. Li, J. A. Gregory, M. A. Lee, C. M. Ordija, N. E. Dowley, D. T. Golenbock, and M. W. Freeman. 2004. The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol. Genomics 19, 319-330. https://doi.org/10.1152/physiolgenomics.00128.2004
  5. Broug-Holub, E., G. B. Toews, J. F. van Iwaarden, R. M. Strieter, S. L. Kunkel, R. Paine, III, and T. J. Standiford. 1997. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect. Immun. 65, 1139-1146.
  6. Devaux, Y., C. Seguin, S. Grosjean, T. N. de, V. Camaeti, A. Burlet, F. Zannad, C. Meistelman, P. M. Mertes, and D. Longrois. 2001. Lipopolysaccharide-induced increase of prostaglandin E(2) is mediated by inducible nitric oxide synthase activation of the constitutive cyclooxygenase and induction of membrane-associated prostaglandin E synthase. J. Immunol. 167, 3962-3971. https://doi.org/10.4049/jimmunol.167.7.3962
  7. Dubois, R. N., S. B. Abramson, L. Crofford, R. A. Gupta, L. S. Simon, L. B. Van De Putte, and P. E. Lipsky. 1998. Cyclooxygenase in biology and disease. FASEB J. 12, 1063-1073.
  8. FitzGerald, G. A. 2003. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug Discov. 2, 879-890. https://doi.org/10.1038/nrd1225
  9. Gilroy, D. W., P. R. Colville-Nash, S. McMaster, D. A. Sawatzky, D. A. Willoughby, and T. Lawrence. 2003. Inducible cyclooxygenase-derived 15-deoxy Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J. 17, 2269-2271.
  10. Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  11. Hoffken, G. and M. S. Niederman. 2002. Nosocomial pneumonia: the importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU. Chest 122, 2183-2196. https://doi.org/10.1378/chest.122.6.2183
  12. Joo, M., M. Kwon, R. T. Sadikot, P. J. Kingsley, L. J. Marnett, T. S. Blackwell, R. S. Peebles, Jr., Y. Urade, and J. W. Christman. 2007. Induction and function of lipocalin prostaglandin D synthase in host immunity. J. Immunol. 179, 2565-2575. https://doi.org/10.4049/jimmunol.179.4.2565
  13. Kingsley, P. J., C. A. Rouzer, S. Saleh, and L. J. Marnett. 2005. Simultaneous analysis of prostaglandin glyceryl esters and prostaglandins by electrospray tandem mass spectrometry. Anal. Biochem. 343, 203-211. https://doi.org/10.1016/j.ab.2005.05.005
  14. Kooguchi, K., S. Hashimoto, A. Kobayashi, Y. Kitamura, I. Kudoh, J. Wiener-Kronish, and T. Sawa. 1998. Role of alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect. Immun. 66, 3164-3169.
  15. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397. https://doi.org/10.1038/41131
  16. Muzio, M., G. Natoli, S. Saccani, M. Levrero, and A. Mantovani. 1998. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 2097-2101. https://doi.org/10.1084/jem.187.12.2097
  17. Richards, M. J., J. R. Edwards, D. H. Culver, and R. P. Gaynes. 1999. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27, 887-892. https://doi.org/10.1097/00003246-199905000-00020
  18. Rock, F. L., G. Hardiman, J. C. Timans, R. A. Kastelein, and J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. U. S. A. 95, 588-593. https://doi.org/10.1073/pnas.95.2.588
  19. Sadikot, R. T., T. S. Blackwell, J. W. Christman, and A. S. Prince. 2005. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 171, 1209-1223. https://doi.org/10.1164/rccm.200408-1044SO
  20. Sadikot, R. T., H. Zeng, A. C. Azim, M. Joo, S. K. Dey, R. M. Breyer, R. S. Peebles, T. S. Blackwell, and J. W. Christman. 2007. Bacterial clearance of Pseudomonas aeruginosa is enhanced by the inhibition of COX-2. Eur. J. Immunol. 37, 1001-1009. https://doi.org/10.1002/eji.200636636
  21. Soong, G., B. Reddy, S. Sokol, R. Adamo, and A. Prince. 2004. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest. 113, 1482-1489. https://doi.org/10.1172/JCI200420773
  22. Tajima, T., T. Murata, K. Aritake, Y. Urade, H. Hirai, M. Nakamura, H. Ozaki, and M. Hori. 2008. Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J. Pharmacol. Exp. Ther. 326, 493-501. https://doi.org/10.1124/jpet.108.137992
  23. Tanikawa, N., Y. Ohmiya, H. Ohkubo, K. Hashimoto, K. Kangawa, M. Kojima, S. Ito, and K. Watanabe. 2002. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem. Biophys. Res. Commun. 291, 884-889. https://doi.org/10.1006/bbrc.2002.6531
  24. Watanabe, K., K. Kurihara, and T. Suzuki. 1999. Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochim. Biophys. Acta 1439, 406-414. https://doi.org/10.1016/S1388-1981(99)00084-0
  25. Watanabe, K., K. Kurihara, Y. Tokunaga, and O. Hayaishi. 1997. Two types of microsomal prostaglandin E synthase: glutathione-dependent and -independent prostaglandin E synthases. Biochem. Biophys. Res. Commun. 235, 148-152. https://doi.org/10.1006/bbrc.1997.6708
  26. Wine, J. J. 1999. The genesis of cystic fibrosis lung disease. J. Clin. Invest. 103, 309-312. https://doi.org/10.1172/JCI6222
  27. Zhang, F. X., C. J. Kirschning, R. Mancinelli, X. P. Xu, Y. Jin, E. Faure, A. Mantovani, M. Rothe, M. Muzio, and M. Arditi. 1999. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274, 7611-7614. https://doi.org/10.1074/jbc.274.12.7611