DOI QR코드

DOI QR Code

Genetic Diversity and Phylogenetic Relationship of Genus Phyllostachys by RAPD Markers

RAPD분자 마커를 이용한 왕대속 대나무의 유전적 다양성 및 계통 관계

  • 이송진 (부산대학교 생물학과) ;
  • 허만규 (동의대학교 분자생물학과) ;
  • 신현철 (국립산림과학원 남부산림연구원) ;
  • 허홍욱 (부산대학교 생물학과)
  • Received : 2010.02.19
  • Accepted : 2010.03.13
  • Published : 2010.06.30

Abstract

Genus Phyllostachys is a long-lived woody species primarily distributed throughout South East Asia. Many species of this genus has been regarded as medically and ecologically important in the world. We evaluated representative samples of the four taxa with RAPD to estimate genetic relationships within the genus Phyllostachys. The percentages of polymorphic loci were 8.9-33.3% at the species level. P. bambusoides was found to show lower genetic diversity (H=0.018) than other species. Total genetic diversity ($H_T$) was 0.315, genetic diversity within populations ($H_S$) was 0.043, the proportion of total genetic diversity partitioned among populations ($G_{ST}$) was 0.659 and the gene flow (Nm) was 0.0263. As some Korean populations were isolated and patchily distributed, they exhibited low levels of genetic diversity. The four taxa of the genus Phyllostachys analyzed were distinctly related to a monophyletic. P. nigra var. henonis. Stapf was found to be more closely related to P. pubescens than to P. nigra. P. bambusoides was quite distinct from the remaining species.

왕대속 대나무들은 대부분 동남아시아에 분포한다. 전세계적으로 왕대속에 속하는 4종은 의학적, 생태학적으로 중요시 되어 왔다. 이번 연구에서 우리나라에 자생하고 있는 왕대속 4종을 RAPD마커를 이용하여 유전적 관계 분석하였다. RAPD분석결과 왕대속에 속하는 4종의 대나무는 명확하게 분류가 되었고 8.9~33.3%로 다형현상이 나타났다. 특히 왕대는 다른 종들 보다 유전적 다양성이 0.018로 가장 낮게 나왔다. 그리고 집단 내 유전적 다양성(Hs)은 0.315, 집단간 다양성(Gst)은 0.659 그리고 유전자 유동(Nm)은 0.0263로 나타났다. 이는 한국의 왕대속 집단은 지리적 및 환경적 요인을 받아 유전적 다양성이 낮게 나타났으며 본 연구는 대나무 유전적 다양성 연구에 중요한 기초자료가 될 것으로 사료된다.

Keywords

References

  1. Bartish, I. V., L. P. Garkava, K. Rumpunen, and H. Nybom. 2000. Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor. Appl. Genet. 101, 554-563. https://doi.org/10.1007/s001220051515
  2. Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza, and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci. 40, 264-273. https://doi.org/10.2135/cropsci2000.401264x
  3. Bowman, K. D., K. Hutcheson, E. P. Odum, and L. R. Shenton. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359.
  4. Demeke, T., R. P. Adams, and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84, 990-994.
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5s. Distributed by the author. Department of Genetics, Univ. Washington, Seattle.
  6. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant population genetics, breeding and genetic resources, Sinauer Associates, Sunderland/MA.
  7. Hamrick, J. L., M. J. W. Godt, and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124. https://doi.org/10.1007/BF00120641
  8. Hongtrakul, V., G. M. Huestis, and S. J. Knapp. 1997. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theoretiocal and Applied Genetics 95, 400-407. https://doi.org/10.1007/s001220050576
  9. Huh, M. K. 1999. Genetic diversity and population structure of Korean Alder (Alnus japonica : Betulaceae). Can. J. For. Res. 29, 1311-1316. https://doi.org/10.1139/cjfr-29-9-1311
  10. Huh, M. K. and H. W. Huh. 2001. Genetic diversity and phylogenetic relationships in alder, Alnus firma, revealed by AFLP. Korean J. Plant Biol. 44, 33-40. https://doi.org/10.1007/BF03030274
  11. Huh, M. K. and H. W. Huh. 2002. Genetic diversity and population structure of Pseudosasa japonica (Bambusaceae) in Korea. Bamboo Sci. & Culture 16, 9-17.
  12. King, L. M. and B. A. Schaal. 1989. Ribosomal DNA variation and distribution of Rudbeckia missouriensis. Evolution 42, 1117-1119.
  13. Kresovich, S., J. G. K. Williams, J. R. MaFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleraceae L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
  14. Lee, Y. N. 1997. Flora of Korea. Kyo-Hak Publishing Co, Seoul, Korea.
  15. McDermott, J. M. and B. A. McDonald. 1993. Gene flow in plant pathosystems. Ann. Rev. Phytopathy. 31, 353-373. https://doi.org/10.1146/annurev.py.31.090193.002033
  16. Molnar, S. J., L. E. James, and K. J. Kasha. 2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43, 224-231. https://doi.org/10.1139/gen-43-2-224
  17. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  18. Paul, S. P., F. N. Wachira, W. Powell, and R. Waugh. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94, 255-263. https://doi.org/10.1007/s001220050408
  19. Saitou, N. and M. Nei. 1987. The neighbor- joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  20. Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27, 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  21. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis.

Cited by

  1. Phylogenic Study of Genus Phyllostachys (Phyllostachys) in Korea by Internal Transcribed Spacer Sequence (ITS) vol.21, pp.9, 2011, https://doi.org/10.5352/JLS.2011.21.9.1281