참고문헌
- Arockiasamy, S. and R. M. Banik. 2008. Optimization of gellan gum production by Sphingmonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 203-210.
- Bajaj, I. B., P. S. Saudagar, R. S. Singhal, and A. Pandey. 2006. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J. Biosci. Bioeng. 102, 150-156. https://doi.org/10.1263/jbb.102.150
- Banik, R. M. and A. Santhiago. 2006. Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol. Lett. 28, 1347-1350. https://doi.org/10.1007/s10529-006-9098-3
- Banik, R. M., A. Santhiagu, and S. N. Upadhyay. 2006. Optimization of nutrients for gellan gum production by Sphingmonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresource Technol. 98, 792-797. https://doi.org/10.1016/j.biortech.2006.03.012
- Ding, S. and T. Tan. 2006. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41, 1451-1454. https://doi.org/10.1016/j.procbio.2006.01.014
- Dreveton, E., F. Monot, D. Ballerini, J. Lecourtier, and L. Choplin. 1994. Effect of mixing and mass transfer conditions on gellan production by Auromonas elodea. J. Ferment. Bioeng. 77, 642-649. https://doi.org/10.1016/0922-338X(94)90147-3
- Giavasis, I., L. M. Harvey, and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb. Technol. 38, 101-108. https://doi.org/10.1016/j.enzmictec.2005.05.003
- Harding, N. E., Y. N. Patel, and R. J. Coleman. 2004. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J. Ind. Microbiol. Biotechnol. 31, 70-82. https://doi.org/10.1007/s10295-004-0118-9
- Jansson, R. E., B. Lindberg, and P. L. A. Sandford. 1983. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124, 135-139. https://doi.org/10.1016/0008-6215(83)88361-X
- Jin, H., N. K. Lee, M. K. Shin, S. K. Kim, D. L. Kaplan, and J. W. Lee. 2003. Production of gellan gum by Sphingomanas paucimobilis NK200 with soybean pomace. Biochem. Eng. J. 16, 357-360. https://doi.org/10.1016/S1369-703X(03)00076-7
- Kanari, B., R. R. Banik, and S. N. Upadhyay. 2002. Effect of environmental factors and carbohydrate on gellan gum production. Appl. Biocehm. Biotechnol. 102-103, 129-140.
- Kang, K. S., G. T. Veeder, P. J. Mirrasoul, T. K. Kaneko, and L. W. Cottrell. 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Mircobiol. 43, 1086-1091.
- Karim, A. A. and R. Bhat. 2009. Fish gelatin: properties, challenge, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563-576. https://doi.org/10.1016/j.foodhyd.2008.07.002
- Lee, N. K., Y. B. Jo. I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingmonas paucibilis NK-2000. J. Life Sci. 8, 1033-1035. https://doi.org/10.1016/0024-3205(69)90454-8
- Li, Y., J. Hugenholtz, J. Chen, and S. Lun. 2002. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 60, 101-106. https://doi.org/10.1007/s00253-002-1064-y
- Lim, S. M., J. R. Ru, J. W. Lee, and S. K. Kim. 2003. Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461. J. Life Sci. 13, 705-711. https://doi.org/10.5352/JLS.2003.13.5.705
- Martin, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sa-Correia. 1996. Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants. Biotechnol. Appl. Biochem. 4, 47-54.
- Morrison, N. A., G. Sworn, R. C. Clark, Y. L. Chen, and T. Talashek. 1999. Gelatin alternatives for the food industry. Prog. Coll. Polym. Sci. 114, 127-131. https://doi.org/10.1007/3-540-48349-7_19
- Sa-Correia, I., A. M. Fialho, P. Videria, L. M. Moreira, A. R. Marques, and H. Albano. 2002. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29, 170-176. https://doi.org/10.1038/sj.jim.7000266
- Schilling, B. M., U. Rau, U. T. Maier, and P. Fankhause. 1999. Modeling and scale-up of the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Eng. 20, 195-201.
- Wang, X., Y. Yuan, C. Liu, D. Zhang, Z. Yang, C. Yang, and C. Ma. 2006. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl. Environ. Microbiol. 72, 3367-3374. https://doi.org/10.1128/AEM.72.5.3367-3374.2006
- West, T. P. 2002. Isolation of a mutant strain Pseudomonas sp. ATCC 31461 exhibiting elevated polysaccharide production. J. Ind Microbiol. Biotechnol. 29, 185-188. https://doi.org/10.1038/sj.jim.7000278
- Yan, G.., G. Du, Y. Li, J. Chen, and J. Zhong. 2005. Enhancement of microbial transaminase production by Streptoverticillium mobaraens: application of a two-stage agitation speed control strategy. Process Biocehm. 40, 963-968. https://doi.org/10.1016/j.procbio.2004.04.002
- Zheng, M. Y., G. C. Du, J. Chen, and W. F. Guo. 2001. A temperature-shift strategy in batch MTG fermentation with S. mobaraense. Process Biochem. 36, 525-530. https://doi.org/10.1016/S0032-9592(00)00229-6
- Zheng, M. Y., G.. C. Du, and J. Chen. 2002. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme Microb. Technol. 31, 477-481. https://doi.org/10.1016/S0141-0229(02)00127-8