DOI QR코드

DOI QR Code

Enhanced Production of Gellan by Sphingomonas paucibilis NK-2000 with Shifts in Agitation Speed and Aeration Rate after Glucose Feeding into the Medium

Sphingomonas paucibilis NK-2000 균주가 생산하는 젤란의 생산 농도 향상을 위한 포도당 첨가 및 교반속도와 통기량 변화 방법의 최적화

  • 이남규 (해양생물산업육성센터) ;
  • 서형필 (해양생물산업육성센터) ;
  • 조영배 (해양생물산업육성센터) ;
  • 손창우 (한국바이오솔루션) ;
  • 고와 (동아대학교 BK21 생물자원 실버바이오사업 인력양성사업단) ;
  • 이진우 (동아대학교 BK21 생물자원 실버바이오사업 인력양성사업단)
  • Received : 2010.02.06
  • Accepted : 2010.07.14
  • Published : 2010.06.30

Abstract

Optimal agitation speed and aeration rate for the production of gellan by Sphingomnas paucibilis NK2000 in a 7 l bioreactor were found to be 400 rpm and 1.0 vvm. The best time for glucose feeding into the medium for enhanced production of gellan by S. paucibilis NK2000 was 36 hr after cultivation. The concentrations of gellan produced by S. paucibilis NK2000 from 1) 20.0 g/l glucose without additional feeding, 2) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr, in which the final concentration in the medium was 10.0 g/l, 3) 20 g/l glucose with feeding of 200.0 g/l glucose and a shift in an agitation speed from 400 to 600 rpm, 4) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 1.5 vvm, 5) and 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 2.0 vvm, were 5.19, 5.74, 6.73, 7.93, and 9.40 g/l, respectively, and their conversion rates from glucose were 26.0, 19.1, 22.4, 26.4, and 31.3%, respectively. Compared to those developed using a normal process, production of gellan by S. paucibilis NK2000 from 20.0 g/l glucose was 1.81 times higher, and and its conversion rate was 1.20 times higher when the optimized process developed in this study was used.

Sphingomnas paucibilis NK2000 균주를 사용한 젤란의 최적 교반속도 및 통기량은 각각 400 rpm 및 1.0 vvm이었다. 이 균주를 사용하여 젤란의 생산성을 향상시키기 위한 포도당의 최적 첨가시기는 배양을 시작한 36시간이었다. 젤란의 생산성을 향상시키기 위한 5가지 방법, 1) 포도당을 첨가하지 않는 방법, 2) 배양 36시간 후에 포도당을 첨가하지만 교반속도 및 통기량을 변화시키지 않는 방법, 3) 배양 36 시간 후에 포도당을 첨가하고 교반속도를 400 rpm에서 600 rpm으로 변화시키는 방법, 4) 배양 36 시간 후에 포도당을 첨가하고 교반속도를 400 rpm에서 600 rpm으로 증가시키고 통기량을 1.0 vvm에서 1.5 vvm으로 증가시키는 방법 및 5) 배양 36 시간 후에 포도당을 첨가하고 교반속도를 400 rpm에서 600 rpm으로 증가시키고 통기량을 1.0 vvm에서 2.0 vvm으로 증가시키는 방법 등을 실험한 결과, 젤란의 생산성은 각각 5.19, 5.74, 6.73, 7.93, 및 9.40 g/l이었으며, 변환률은 각각 26.0, 19.1, 22.4, 26.4, and 31.3%이었다. 최적의 방법으로 생산한 젤란의 생산농도 및 포도당 전환율은 포도당을 첨가하지 않은 방법으로 생산한 젤란의 생산농도 및 포도당 전환율에 비하여 각각 1.81 및 1.20 배 증가하였다.

Keywords

References

  1. Arockiasamy, S. and R. M. Banik. 2008. Optimization of gellan gum production by Sphingmonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 203-210.
  2. Bajaj, I. B., P. S. Saudagar, R. S. Singhal, and A. Pandey. 2006. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J. Biosci. Bioeng. 102, 150-156. https://doi.org/10.1263/jbb.102.150
  3. Banik, R. M. and A. Santhiago. 2006. Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol. Lett. 28, 1347-1350. https://doi.org/10.1007/s10529-006-9098-3
  4. Banik, R. M., A. Santhiagu, and S. N. Upadhyay. 2006. Optimization of nutrients for gellan gum production by Sphingmonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresource Technol. 98, 792-797. https://doi.org/10.1016/j.biortech.2006.03.012
  5. Ding, S. and T. Tan. 2006. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41, 1451-1454. https://doi.org/10.1016/j.procbio.2006.01.014
  6. Dreveton, E., F. Monot, D. Ballerini, J. Lecourtier, and L. Choplin. 1994. Effect of mixing and mass transfer conditions on gellan production by Auromonas elodea. J. Ferment. Bioeng. 77, 642-649. https://doi.org/10.1016/0922-338X(94)90147-3
  7. Giavasis, I., L. M. Harvey, and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb. Technol. 38, 101-108. https://doi.org/10.1016/j.enzmictec.2005.05.003
  8. Harding, N. E., Y. N. Patel, and R. J. Coleman. 2004. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J. Ind. Microbiol. Biotechnol. 31, 70-82. https://doi.org/10.1007/s10295-004-0118-9
  9. Jansson, R. E., B. Lindberg, and P. L. A. Sandford. 1983. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124, 135-139. https://doi.org/10.1016/0008-6215(83)88361-X
  10. Jin, H., N. K. Lee, M. K. Shin, S. K. Kim, D. L. Kaplan, and J. W. Lee. 2003. Production of gellan gum by Sphingomanas paucimobilis NK200 with soybean pomace. Biochem. Eng. J. 16, 357-360. https://doi.org/10.1016/S1369-703X(03)00076-7
  11. Kanari, B., R. R. Banik, and S. N. Upadhyay. 2002. Effect of environmental factors and carbohydrate on gellan gum production. Appl. Biocehm. Biotechnol. 102-103, 129-140.
  12. Kang, K. S., G. T. Veeder, P. J. Mirrasoul, T. K. Kaneko, and L. W. Cottrell. 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Mircobiol. 43, 1086-1091.
  13. Karim, A. A. and R. Bhat. 2009. Fish gelatin: properties, challenge, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563-576. https://doi.org/10.1016/j.foodhyd.2008.07.002
  14. Lee, N. K., Y. B. Jo. I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingmonas paucibilis NK-2000. J. Life Sci. 8, 1033-1035. https://doi.org/10.1016/0024-3205(69)90454-8
  15. Li, Y., J. Hugenholtz, J. Chen, and S. Lun. 2002. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 60, 101-106. https://doi.org/10.1007/s00253-002-1064-y
  16. Lim, S. M., J. R. Ru, J. W. Lee, and S. K. Kim. 2003. Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461. J. Life Sci. 13, 705-711. https://doi.org/10.5352/JLS.2003.13.5.705
  17. Martin, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sa-Correia. 1996. Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants. Biotechnol. Appl. Biochem. 4, 47-54.
  18. Morrison, N. A., G. Sworn, R. C. Clark, Y. L. Chen, and T. Talashek. 1999. Gelatin alternatives for the food industry. Prog. Coll. Polym. Sci. 114, 127-131. https://doi.org/10.1007/3-540-48349-7_19
  19. Sa-Correia, I., A. M. Fialho, P. Videria, L. M. Moreira, A. R. Marques, and H. Albano. 2002. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29, 170-176. https://doi.org/10.1038/sj.jim.7000266
  20. Schilling, B. M., U. Rau, U. T. Maier, and P. Fankhause. 1999. Modeling and scale-up of the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Eng. 20, 195-201.
  21. Wang, X., Y. Yuan, C. Liu, D. Zhang, Z. Yang, C. Yang, and C. Ma. 2006. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl. Environ. Microbiol. 72, 3367-3374. https://doi.org/10.1128/AEM.72.5.3367-3374.2006
  22. West, T. P. 2002. Isolation of a mutant strain Pseudomonas sp. ATCC 31461 exhibiting elevated polysaccharide production. J. Ind Microbiol. Biotechnol. 29, 185-188. https://doi.org/10.1038/sj.jim.7000278
  23. Yan, G.., G. Du, Y. Li, J. Chen, and J. Zhong. 2005. Enhancement of microbial transaminase production by Streptoverticillium mobaraens: application of a two-stage agitation speed control strategy. Process Biocehm. 40, 963-968. https://doi.org/10.1016/j.procbio.2004.04.002
  24. Zheng, M. Y., G. C. Du, J. Chen, and W. F. Guo. 2001. A temperature-shift strategy in batch MTG fermentation with S. mobaraense. Process Biochem. 36, 525-530. https://doi.org/10.1016/S0032-9592(00)00229-6
  25. Zheng, M. Y., G.. C. Du, and J. Chen. 2002. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme Microb. Technol. 31, 477-481. https://doi.org/10.1016/S0141-0229(02)00127-8