DOI QR코드

DOI QR Code

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Aluminum Phytoremediation

알루미늄 식물학적정화에 사용 가능하고 생분해 되는 킬레이트로 후보로서의 ethylenediamine

  • Lee, Sang-Man (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 이상만 (경북대학교 응용생명과학부)
  • Received : 2010.03.18
  • Accepted : 2010.05.20
  • Published : 2010.07.30

Abstract

Phytoextraction is a technique which uses plants to clean up metal-contaminated soils. Recently, various chelating agents were introduced into this technique to increase the bioavailability of metals in soils. Even though the technique is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Alunimum (Al) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Al to analyze the effect on plant growth. His slightly diminished the inhibitory effect of Al on root growth of plants, whereas, Cys, citrate, malate, oxalate, and succinate did not show significant effects. Both EDTA and EDA strongly diminished the inhibitory effect of Al on root growth. The effect of EDA is correlated with decreased Al uptake into the plants. In conclusion, as a biodegradable chelating agent, EDA is a good candidate for highly Al-contaminated areas.

Phytoextraction은 식물을 이용하여 환경 정화하는 한 기술로서 금속으로 오염된 토양을 정화하는 것이다. 토양에 존재하는 금속의 추출을 용이 하기 위해서 현재 다양한 킬레이트가 사용되고 있다. Phytoextraction이 경제적이고 친환경적인 장점이 있지만 고농도로 오염된 지역에서는 적용이 어려운데 이는 식물이 이러한 지역에서 살아남기 어렵기 때문이며 이러한 문제점을 해결하는 것이 본 연구의 목적이다. 연구 대상의 금속으로서 알루미늄을 선택하였고, 킬레이트는 아미노산인 시스테인과 히스티딘, 작은 크기의 유기산으로서 citric acid, malic acid, succinic acid, oxalic acid, 그리고 ethylenediamine (EDA)를 선택하였으며, EDTA는 비교 대상으로 본 연구에 사용되었다. 다양한 농도의 알루미늄를 포함하는 배지에 식물을 키우면서 여러 킬레이트가 식물의 뿌리 성장에 미치는 영향을 분석하였다. 알루미늄에 의한 식물의 성장 억제는 히스티딘에 의해서 약간 완화되었으며 시스테인, citrate, malate, oxalate, 그리고 succinate는 별 다른 영향이 없었다. EDTA와 EDA는 알루미늄에 의한 식물성장 억제를 강력하게 억제하였으며 이는 알루미늄의 식물 내 흡수를 억제에 의한 것이다. 따라서 알루미늄의 식물성장억제를 강력하게 완화시켜주는 EDA는 고농도의 알루미늄으로 오염된 지역에 식물의 성장이 가능하도록 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860-865. https://doi.org/10.1021/es960552a
  2. Cooper, E. M., J. T. Sims, J. W. Cunningham, J. W. Huang, and W. R. Berti. 1999. Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual. 28, 1709-1719. https://doi.org/10.2134/jeq1999.00472425002800060004x
  3. Cunningham, S. D. and D. W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110, 715-719.
  4. Ebbs, S. D. and L. V. Kochian. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32, 802-806. https://doi.org/10.1021/es970698p
  5. Epstein, A. L., C. D. Gussman, M. J. Blaylock, U. Yermiyahu, J. W. Huang, Y. Kapulnik, and C. S. Orser. 1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208, 87-94. https://doi.org/10.1023/A:1004539027990
  6. Godbold, D. L., W. J. Horst, J. C. Collins, D. A. Thurman, and H. Marschner. 1984. Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J. Plant Physiol. 116, 59-69. https://doi.org/10.1016/S0176-1617(84)80084-X
  7. Goyer, R. A. 1997. Toxic and essential metal interactions. Annu. Rev. Nutr. 17, 37-50. https://doi.org/10.1146/annurev.nutr.17.1.37
  8. Grcman, H., D. Vodnik, S. Velikonja-Bolta, and D. Lestan. 2003. Ethylenediaaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500-506. https://doi.org/10.2134/jeq2003.0500
  9. Hong, J. and P. N. Pintauro. 1996. Selective removal of heavy metals from contaminated kaolin by chelators. Water Air Soil Pollut. 87, 73-91. https://doi.org/10.1007/BF00696830
  10. Huang, J. W., J. J. Chen, W. R. Berti, and S. D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800-805. https://doi.org/10.1021/es9604828
  11. Kayser, A., K. Wenger, A. Keller, W. Attinger, H. R. Felix, S. K. Gupta, and R. Schulin. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol. 34, 1778-1783. https://doi.org/10.1021/es990697s
  12. Kerkeb, L. and U. Kramer. 2003. The role of free histidine in xylem loading of nickel in Asylum lesbiacum and Brassica juncea. Plant Physiol. 131, 716-724. https://doi.org/10.1104/pp102.010686
  13. Kochian, L. V. 1995. Cellular mechanisms of Al toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321
  14. Kos, B. and D. Lestan. 2003. Influence of biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253, 403-411. https://doi.org/10.1023/A:1024861725626
  15. Krishnamurti, G. S. R., G. Cielinski, P. M. Huang, and K. C. J. vanRees. 1998. Kinetics of cadmium release from soils as influenced by organic acids: Implementation in cadmium availability. J. Environ. Qual. 26, 271-277. https://doi.org/10.2134/jeq1997.00472425002600010038x
  16. Lombi, E., F. J. Zhao, S. J. Dunham, and S. P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919-1926. https://doi.org/10.2134/jeq2001.1919
  17. Ma, J. F. and S. Hiradate. 2000. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench.) Planta 211, 355-360. https://doi.org/10.1007/s004250000292
  18. MacDonald, T. and R. B. Martin. 1988. Al ion in biological systems. Trends Biol. Sci. 13, 15-19. https://doi.org/10.1016/0968-0004(88)90012-6
  19. Mathys, W. 1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant 40, 130-136. https://doi.org/10.1111/j.1399-3054.1977.tb01509.x
  20. Matsumoto, H. 2000. Cell biology of aluminium toxicity and tolerance in higher plants. International Rev. Cytol. 200, 1-46. https://doi.org/10.1016/S0074-7696(00)00001-2
  21. Mench, M., J. L. A. MorelGuckert, and B. Gruillet. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39, 521-527. https://doi.org/10.1111/j.1365-2389.1988.tb01236.x
  22. Sagner, S., R. Kneer, G. Wanner, J. P. Cosson, B. Deus-Neumann, and M. H. Zenk. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry 47, 339-347. https://doi.org/10.1016/S0031-9422(97)00593-1
  23. Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. 49, 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643
  24. Shen, Z. G., X. D. Li, C. C. Wang, H. M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31, 1893-1900. https://doi.org/10.2134/jeq2002.1893
  25. Stillman, M. J., C. F. Shaw, and K. T. Suzuki. 1992. metallothioneins, synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes, VCH, New York
  26. Wagner, G. J. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agro. 51, 173-212. https://doi.org/10.1016/S0065-2113(08)60593-3
  27. Wu, J., F. C. Hsu, and S. D. Cunningham. 1999. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environ. Sci. Technol. 33, 1898-1904. https://doi.org/10.1021/es9809253