DOI QR코드

DOI QR Code

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice

고지방식이 비만쥐의 지방관련 단백질의 변화

  • Seo, Eun-Hui (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Han, Ying (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Park, So-Young (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Koh, Hyong-Jong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine) ;
  • Lee, Hye-Jeong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
  • 서은희 (동아대학교 의과대학 약리학교실) ;
  • 한영 (동아대학교 의과대학 약리학교실) ;
  • 박소영 (동아대학교 의과대학 약리학교실) ;
  • 고형종 (동아대학교 의과대학 약리학교실) ;
  • 이혜정 (동아대학교 의과대학 약리학교실)
  • Received : 2010.05.13
  • Accepted : 2010.05.24
  • Published : 2010.07.30

Abstract

Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.

과체중과 비만은 당뇨병, 고혈압, 고지혈증과 같은 신진 대사 질환의 발병과 강력하게 연관되어 있다. 비만의 원인은 여러가지가 있겠지만, 고지방식이는 비만의 원인 중 가장 중요한 요소 중 하나이다. 본 연구에서는 C57BL/6 생쥐에게 22주간의 고지방 식이를 주었으며, 이를 통해 비만과 고혈당을 유도하였다. 22주 후에 고지방식이를 한 생쥐들에서 체중과 혈장 포도당 수준이 정상 식이를 한 생쥐들에 비해 크게 증가함을 관찰하였다. 복막 내 당 부하 검사(IPGTT)에서도 고지방 식이를 한 생쥐들은 정상 식이를 한 생쥐들에 비해서 당 내성 이상 반응을 보여주었다. 이러한 결과들은 고지방식이가 C57BL/6 생쥐에서 비만 및 고혈당을 유도한다는 사실을 확인시켜 주었다. 고지방식이군 생쥐들에서는 정상식이군의 생쥐들에 비해 혈장의 중성지방과 총 콜레스테롤의 양이 증가됨이 관찰되었다. 간에서의 중성지방 및 총 콜레스테롤의 수준도 역시 증가하였다. 따라서, 간에서의 지질대사가 어떻게 변하였는지를 알기 위해, 지질대사에 관련된 단백질들의 변화를 관찰하였다. 지방 합성과 관련된 효소들 중 FAS와 GPAT가 고지방식이 군에서 의미있게 증가 되어있었으며, 지방 수송에 관련하는 단백질 중에서도 ApoB 및 MTP의 큰 증가가 고지방식이군에서 관찰되었다. 흥미롭게도, 대사 조절 인자로 알려진 AMPK의 단백질의 양과 인산화 정도는 정상식이군에 비해 고지방식이군에서 의미있게 증가되었음이 관찰되었다. 결론적으로, 본 연구에서 우리는 고지방식이가 지질 합성과 지질 수송과정을 생리학적으로 증가시키지만, 역설적으로 AMPK의 활성화를 유발한다는 것을 확인하였다.

Keywords

References

  1. Berriot-Varoqueaux, N. L. P., A. M. Samson-Bouma, and J. R. Wetterau. 2000. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663-697. https://doi.org/10.1146/annurev.nutr.20.1.663
  2. Bugianesi, E., P. Manzini, S. D'Antico, E. Vanni, F. Longo, N. Leone, P. Massarenti, A. Piga, G. Marchesini, and M. Rizzetto. 2004. Relative contribution of iron burden, HFE mutations and insulin resistance to fibrosis in non alcoholic fatty liver. Hepatology 39, 179-187. https://doi.org/10.1002/hep.20023
  3. Burnett, J. R., L. J. Wilcox, D. E. Telford, S. J. Kleinstiver, P. H. R. Barrett, R. S. Newton, and M. W. Huff. 1999. Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs. J. Lipid Res. 40, 1317-1327.
  4. Cianflone, K., Z. Yasruel, M. A. Rodriguez, D. Vas, and A. D. Sniderman. 1990. Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. J. Lipid Res. 31, 2045-2055.
  5. Dentin, R., P. D. Denechaud, F. Benhamed, J. Girard, and C. Postic. 2006. Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. J. Nut. 136, 1145-1149.
  6. Elshourbagy, N. A., J. C. Near, P. J. Kmetz, G. M. Sathe, C. Southan, J. E. Strickler, M. Gross, J. F. Young, T. N. Wells, and P. H. Groot. 1990. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J. Biol. Chem. 265, 1430-1435.
  7. Ginsberg, H. N. 1997. Role of lipid synthesis, chaperone proteins and proteasomes in the assembly and secretion of apoprotein Bcontaining lipoproteins from cultured liver cells. Clin. Exp. Pharmacol. Physiol. 24, A29-A32. https://doi.org/10.1111/j.1440-1681.1997.tb03051.x
  8. Gordon, D. A. and H. Jamil. 2000. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim. Biophys. Acta. 1486, 72-83. https://doi.org/10.1016/S1388-1981(00)00049-4
  9. Hardie, D. G. 2004. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev. Endocr. Metab. Disord. 5, 119-125. https://doi.org/10.1023/B:REMD.0000021433.63915.bb
  10. Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546, 113-120. https://doi.org/10.1016/S0014-5793(03)00560-X
  11. Haynes, P., S. Liangpunsakul, and N. Chalasani. 2004. Nonalcoholic fatty liver disease in individuals with severe obesity. Clin. Liver Dis. 8, 535-547. https://doi.org/10.1016/j.cld.2004.04.007
  12. Hedley, A. A., C. L. Ogden, C. L. Johnson, M. D. Carroll, L. R. Curtin, and K. M. Flegal. 2004. Prevalence of overweight and obesity among US children, adolescents, and adult, 1999-2002. JAMA 291, 2847-2850 https://doi.org/10.1001/jama.291.23.2847
  13. Jakobsson, A., R. Westerberg, and A. Jacobsson. 2006. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237-249. https://doi.org/10.1016/j.plipres.2006.01.004
  14. Jamil, H., J. K. Dickson, Jr., C. Chu, M. W. Lago, J. K. Rinehart, S. A. Biller, R. E. Gregg, and J. R. Wetterau. 1995. Microsomal triglyceride transfer protein: specificity of lipid binding and transport. J. Biol. Chem. 270, 6549-6554. https://doi.org/10.1074/jbc.270.12.6549
  15. Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, N. Nishimoto, T. Noguchi, and T. Tanaka. 1990. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur. J. Biochem. 190, 435-441. https://doi.org/10.1111/j.1432-1033.1990.tb15593.x
  16. Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, T. Noguchi, and T. Tanaka. 1989. Effects of nutrients and insulin on transcriptional and post-transcriptional regulation of glucose-6-phosphate dehydrogenase synthesis in rat liver. Biochim. Biophys. Acta. 1006, 104-110. https://doi.org/10.1016/0005-2760(89)90329-9
  17. Lewin, T. M., S. Wang, C. A. Nagle, C. G. Van Horn, and R. A. Coleman. 2005. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am. J. Physiol. Endocrinol. Metab. 288, E835-E844. https://doi.org/10.1152/ajpendo.00300.2004
  18. Menendez, J. A., A. Vazquez-Martin, F. J. Ortega, and J. M. Fernandez-Real. 2990. Fatty Acid Synthase: Association with Insulin Resistance, Type 2 Diabetes, and Cancer. Clin. Chem. 55, 425-438. https://doi.org/10.1373/clinchem.2008.115352
  19. Mokdad, A. H., E. S. Ford, and B. A. Bowman, W. H. Dietz, F. Vinicor, V. S. Bales, J. S. Marks. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA 289, 76-79. https://doi.org/10.1001/jama.289.1.76
  20. Mori, S., T. Yamasaki, I. Sakaida, T. Takami, E. Sakaguchi, T. Kimura, F. Kurokawa, S. Maeyama, and K. Okita. 2004. Hepatocellular carcinoma with nonalcoholic steatohepatitis. J. Gastroenterol. 39, 391-396. https://doi.org/10.1007/s00535-003-1308-3
  21. Nicol, C. J., M. Adachi, T. E. Akiyama, and F. J. Gonzalez. 2005. ARgamma in endothelial cells influences high fat diet-nducedhypertension. Am. J. Hypertens 18, 549-556. https://doi.org/10.1016/j.amjhyper.2004.10.032
  22. Ntambi, J. M. 1992. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J. Biol. Chem. 267, 10925-10930.
  23. Olefsky, J. M., O. G. Kolterman, and A. Scarlett. 1982. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 243, E15-E30.
  24. Olofsson, S. O., L. Asp, and J. Boren. 1990. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipido. 10, 341-346.
  25. Pinkney, J. 2002. Prevention and cure of type 2 diabetes, BMJ 325, 232-233. https://doi.org/10.1136/bmj.325.7358.232
  26. Postic, C. and J. Girard. 2008. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829-838. https://doi.org/10.1172/JCI34275
  27. Pullinger, C. R., J. D. North, B. B. Teng, V. A. Rifici, A. E. Ronhild de Brito, and J. Scott. 1989. The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA halflife. J. Lipid Res. 30, 1065-1077.
  28. Reaven, G. M. 1988. Banting lecture. Role of insulin resistance in human disease. Diabetes 37, 1595-1607. https://doi.org/10.2337/diabetes.37.12.1595
  29. Saha, A. K., P. R. Avilucea, J. M. Ye, M. M. Assifi, E. W. Kraegen, and N. B. Ruderman. 2004 Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem. Biophys. Res. Commun. 314, 580-585. https://doi.org/10.1016/j.bbrc.2003.12.120
  30. Shoelson, S. E., L. Herrero, and A. Naaz. 2007. Obesity, inflammation, and insulin resistance. Gastroenterology 132, 2169-2180. https://doi.org/10.1053/j.gastro.2007.03.059
  31. Tao, R., F. Ye, Y. He, J. Tian, G. Liu, T. Ji, and Y. Su. 2009. Improvement of high-fat-diet-induced metabolic syndrome by a compound from Balanophora polyandra Griff in mice. Eur. J. Pharmacol. 616, 328-333. https://doi.org/10.1016/j.ejphar.2009.06.011
  32. Van Hoek, B. 2004. Non-alcoholic fatty liver disease: a brief review. Scand J. Gastroenterol. 241, 56-59
  33. Wetterau, J. R., R. E. Gregg, T. W. Harrity, C. Arbeeny, M. Cap, F. Connolly, C. H. Chu, R. J. George, D. A. Gordon, H. Jamil, K. G. Jolibois, L. K. Kunselman, S. J. Lan, T. J. Maccagnan, B. Ricci, M. Yan, D. Young, Y. Chen, O. M. Fryszman, J. V. M. Logan, C. L. Musial, M. A. Poss, J. A. Robl, L. M. Simpkins, W. A. Slusarchyk, R. Sulsky, P. Taunk, D. A. Magnin, J. A. Tino, R. M. Lawrence, J. K. Dickson, Jr., and S. A. Biller. 1998. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751-754. https://doi.org/10.1126/science.282.5389.751
  34. Wilcox, L. J., P. H. R. Barrett, R. S. Newton, and M. W. Huff. 1999. ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of apoB. Arterioscler. Thromb. Vasc. Biol. 19, 939-949. https://doi.org/10.1161/01.ATV.19.4.939
  35. Yao, Z. and D. E. Vance. 1988. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263, 2998-3004.
  36. Yao, Z., K. Tran, and R. S. McLeod. 1997. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res. 38, 1937-1953.

Cited by

  1. Inhibitory Effects of Anthocyanin-rich Fraction from Purple Sweet Potato on High Fat Diet-induced Insulin Resistance and Hepatic Steatosis vol.26, pp.3, 2016, https://doi.org/10.17495/easdl.2016.6.26.3.278
  2. Effect of fermented soybean product (Cheonggukjang) intake on metabolic parameters in mice fed a high-fat diet 2013, https://doi.org/10.1002/mnfr.201200700
  3. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague–Dawley rats vol.60, pp.1, 2016, https://doi.org/10.3402/fnr.v60.30092