DOI QR코드

DOI QR Code

β-Glucosidase Recovery from a Solid-State Fermentation System by Aspergillus niger

Aspergillus niger 의 고체상태 발효 시스템에서의 β-Glucosidase 회수

  • Received : 2010.04.17
  • Accepted : 2010.05.15
  • Published : 2010.07.30

Abstract

Investigations were carried out on a $\beta$-glucosidase produced by Aspergillus niger under solid-state fermentation conditions as a model of enzyme recovery from fermented wheat bran. The leaching efficiency of distilled water to recover the enzyme from the fermented bran was higher than acetate buffer, citrate buffer, citrate-phosphate buffer and 5% methanol; thus, the conditions were further optimized with distilled water as the extracting agent. After fermented bran was washed three times with distilled water for 1.5 hr each under shaking conditions at 1:5 solid to solvent ratio, a maximum recovery of 0.025 U/g of wheat bran was obtained.

밀기울 발효에서 효소회수의 모델로 Aspergillus niger를 고체상태로 발효시켜 조사하였다. 발효시킨 밀기울에서 증류수로 효소추출 효율은 초산 완충액, 구연산 완충액, 구연산-인산 완충액 및 5% 메탄올 처리보다 높았다. 따라서, 추출 용매로 증류수를 이용하여 최적 조건을 상세히 검토하였다. 최적 조건은 고체와 액체 용매를 1:5의 비율로 증류수로서 세 번 세척하였을 때에 최대 회수율을 0.025 U/g으로 확보하였다.

Keywords

References

  1. Badhan, A. K., B. S. Chadha, J. Kaur, H. S. Saini, and M. K. Bhat. 2007. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technol. 98, 504-510. https://doi.org/10.1016/j.biortech.2006.02.009
  2. Caltron, G. J., C. S. Coobs, and J. P. Hmman. 1986. Manual of Industrial Microbiology and Biotechnology, American society of microbiology, Washington. USA, 436-445.
  3. Castilho, L. R., T. L. M. Alves, and A. M. Ricardo. 1999. A Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem. 34, 181-186. https://doi.org/10.1016/S0032-9592(98)00089-2
  4. Chandra, M. S., B. R. Reddy, and Y. L. Choi. 2008. Production of cellulolytic enzymes by Aspergillus niger on solid and submerged state fermentation. J. Life Sci. 18, 1049-1052. https://doi.org/10.1016/0024-3205(76)90137-5
  5. Chandra, M. S., B. R. Reddy, and Y. L. Choi. 2008a. Optimization of extraction of filter paperase from the fermented bran of Aspergillus niger in solid state fermentation. J. Appl. Biol. Chem. 51, 155-159. https://doi.org/10.3839/jabc.2008.028
  6. Chandra, M. S., B. Viswanath, and B. R. Reddy. 2007. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian J. Microbiol. 47, 323-328. https://doi.org/10.1007/s12088-007-0059-x
  7. Chundakhadu, K. 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
  8. Cihangir, N. and E. Sarikaya. 2004. Investigation of lipase production by a new isolate of Aspergillus sp. World J. Microbiol. Biotechnol. 20, 193-197. https://doi.org/10.1023/B:WIBI.0000021781.61031.3a
  9. Considine, P. J., A. O’Rorke, T. J. Hackett, and M. P. Coughlan. 1988. Hydrolysis of beet pulp polysaccharides by extracts of solid state cultures of Penicillium capsulatum. Biotechnol. Bioeng. 31, 433-438. https://doi.org/10.1002/bit.260310507
  10. Fadel, M. 2000. Production physiology of cellulases and ${\beta}-glucosidase$ enzymes of Aspergillus niger grown under solid state fermentation conditions. J. Biol. Sci. 1, 401-411. https://doi.org/10.3923/jbs.2001.401.411
  11. Fernandez Lahore, H. M., E. R. Fraile, and O. Cascone. 1998. A protease recovery from a solid-state fermentation system. J. Biotechnol. 62, 83-93. https://doi.org/10.1016/S0168-1656(98)00048-0
  12. Hahn-Hagerdal, B. 1986. Enzyme Microbiol. Technol. 8, 322. https://doi.org/10.1016/0141-0229(86)90129-8
  13. Heck, J. X., P. F. Hertz, and M. A. Z. Ayub. 2002. Cellulase and xylanase production by isolated Amazon Bacillus strains using soybean industrial residue based solid state cultivation. Braz. J. Microbiol. 33, 213-218. https://doi.org/10.1590/S1517-83822002000300005
  14. Herr, D. 1979. Secretion of cellulases and β-glucosidase by Trichoderma viride TTCC 1433 in submerged cultures on different substrates. Biotechnol. Bioeng. 21,1361-1363. https://doi.org/10.1002/bit.260210805
  15. Illanes, A., G. Aroca, L. Cabello, and F. Acevedo. 1992. World J. Microbiol. Biotechnol. 8, 488-493. https://doi.org/10.1007/BF01201946
  16. Jecu, L. 2000. Solid state fermentation of agricultural wastes for endoglucanase production. Ind. Crop. Prod. 11, 1-5. https://doi.org/10.1016/S0926-6690(99)00022-9
  17. Kim, J. H., M. Hosobuchi, M. Kishimoto, T. Seki, T. Yoshida, H. Taguchi, and D. D. Y. Ryu. 1985. Cellulase production by a solid state culture system. Biotechnol. Bioeng. 27, 1445-1450. https://doi.org/10.1002/bit.260271008
  18. Kotchoni, O. S. and O. O. Shonukan. 2002. Regulatory mutations affecting the synthesis of cellulase in B. pumulis. World J. Microbiol. Biotechnol. 18, 487-491. https://doi.org/10.1023/A:1015571022652
  19. Krishna, C. 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
  20. Krishna, C. and M. Chandrasekharan. 1996. Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid state fermentation. Appl. Microbiol. Biotechnol. 46, 106-111. https://doi.org/10.1007/s002530050790
  21. Leda, R. C., A. M. Ricardo, and L. M. A. Tito. 2000. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresource Technol. 71, 45-50. https://doi.org/10.1016/S0960-8524(99)00058-9
  22. Lonsane, B. K. and M. M. Krishnaiah. 1992. Product leaching and downstream processing, pp. 147, In Solid Substrate Cultivation, In Doelle, H. W., D. A. Mitchell, and C. E. Rolz, (eds.), Elsevier Science Publishers. London.
  23. Lonsane, B. K. and M. V. Ramesh. 1990. Production of bacterial thermostable ${\alpha}-amylase$ by solid state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis. Advances Appl. Microbiol. 35, 1-56. https://doi.org/10.1016/S0065-2164(08)70242-9
  24. Lonsane, B. K. and N. P. Ghildyal. 1992. Exoenzymes, pp. 191-209, In Doelle, H. W., D. A. Mitchell, and C. E. Rolz (eds.), Solid Substrate Cultivation. Elsevier, London.
  25. Lonsane, B. K., N. P. Ghild, S. Budeatman, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7, 258-265. https://doi.org/10.1016/0141-0229(85)90083-3
  26. Lynd, L. R., P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mole. Biol. Rev. 66, 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  27. McCarthy, A. J. 1987. Lignocellulose-degrading actinomycetes. FEMS Microbiol. Rev. 46, 145-163. https://doi.org/10.1111/j.1574-6968.1987.tb02456.x
  28. Mitchell, D. A., Z. Targonski, A. Rogalski, and A. Leonowicz. 1992. Substrates for processes, pp. 29-52, In Doelle, H. W., D. A. Mitchell, and C. E. Rolz (eds.), Solid Substrate Cultivation. Elsevier, London,
  29. Muniswaran, P. K. A. and N. C. L. N. Charyulu. 1994. Solid substrate fermentation of coconut coir pitch for cellulase production. Enzyme Microb. Technol. 16, 436-440. https://doi.org/10.1016/0141-0229(94)90161-9
  30. Narasimha, G., G. V. A. K. Babu, and B. Rajasekhar Reddy. 1999. Cellulolytic activity of fungal cultures isolated from soil contaminated with effluents of cotton ginning industry. J. Environ. Biol. 20, 235-239.
  31. Palit, S. and R. Banerjee. 2001. Optimization of extraction parameters for recovery of α-amylase from the fermented bran of Bacillus circulans GRS313. Braz. Arch. Biol. Technol. 44, 107-111.
  32. Panagiotou, G., D. Kekos, B. J. Macris, and P. Christakopoulos. 2003. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind. Crop. Prod. 18, 37-45. https://doi.org/10.1016/S0926-6690(03)00018-9
  33. Ramakrishna, S. V., T. Suseela, N. P. Ghildyal, S. A. Jaleel, P. Prema, B. K. Lonsane, and S. Y. Ahmed. 1982. Recovery of amyloglucosidase from moldy bran. Ind. J. Technol. 20, 476-480
  34. Ramamurthy, V. and R. M. Kothari. 1993. Comparison of fungal protease production by submerged and surface cultivation. J. Biotechnol. 27, 349-354. https://doi.org/10.1016/0168-1656(93)90097-7
  35. Ramesh, M. V. and B. K. Lonsane. 1988. Chem. Mikrobiol. Technol. Lebnsm. 11, 155.
  36. Singh, J. and A. P. Garg. 1995. Production of cellulases by Gliocladium virens Miller et al. on Eichhornia under solid state fermentation conditions. J. Ind. Bot. Soc. 74, 305-309.
  37. Tolan, J. S. and B. Foody. 1999. Cellulase from submerged fermentation. Adv. Biochem. Eng. Biotechnol. 65, 41-67.