DOI QR코드

DOI QR Code

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada (Dept. of Electrical Engineering, University of Saida Algeria) ;
  • Miloud, Yahia (Dept. of Electrical Engineering, University of Saida Algeria) ;
  • Miloudi, Abdellah (Dept. of Electrical Engineering, University of Saida Algeria)
  • 투고 : 2010.02.16
  • 심사 : 2010.06.10
  • 발행 : 2010.09.01

초록

Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

키워드

참고문헌

  1. C. Chan, “The state of the art of electric and hybridvehicles,” Proc. Of the IEEE, Vol. 90, No. 2, pp. 247-275, Feb. 2002. https://doi.org/10.1109/5.989873
  2. J. Faiz, M.B.B. Sharifian, A. Keyhani, A.B. Proca,“Sensorless direct torque control of induction motorsused in electric vehicle,” IEEE, Trans. Energy Conversion,Vol. 18, No. 1, Mar. 2003.
  3. J. Faiz, S.H. Hossieni, M. Ghaneei, A. Keyhani, A.B.Proca, “Direct torque control of induction motors forelectric propulsion systems,” Electric Power SystemResearch, Vol. 51, pp. 95-101, Aug. 1999. https://doi.org/10.1016/S0378-7796(98)00098-4
  4. K. Jezernik, “Speed sensorless torque control of inductionmotor for EV’s,” Proc. Workshop on AdvancedMotion Control, pp. 236-241, 2002.
  5. M.A. Rahman, R. Qin, “A permanent magnet hysteresishybrid synchronous motor for electric vehicles,”IEEE Trans. Ind. Electron. Vol. 44, No. 1, pp.46-53, Feb. 1997. https://doi.org/10.1109/41.557498
  6. W. Shihua, S. Liwei, C. Shumei, “Study on improvingthe performance of permanent magnet wheel motorfor the electric vehicle application,” IEEE, Trans.Magn. Vol. 43, No. 1, Jan. 2007.
  7. A. Bouscaylor, B. Davat, B. de Fornel, B. Fracois,“Multimachine Multiconverter System: applicationfor electromechanical drives,” European PhysicsJournal – Applied Physics, Vol. 10, No. 2, pp. 131-147, 2000. https://doi.org/10.1051/epjap:2000124
  8. E., Benkhoris F., “Control structures for multimachinemulti-converter systems with upstream coupling,”Elsevier, Mathematics and computers in simulation,Vol. 63, pp. 261-270, 2003. https://doi.org/10.1016/S0378-4754(03)00074-0
  9. I. Takahachi and T. Noguchi, “A new quick-responseand high-efficiency control strategy of an inductionmotor,” IEEE Trans. Ind. Applicat., Vol. 22, No. 5, pp.820-827, 1986. https://doi.org/10.1109/TIA.1986.4504799
  10. T.J. Vyncke, J. A. Melkebeek, and R. K. Boel, “Directtorque control of permanent magnet synchronous motors- an overview,” in conf. Proc. 3rd IEEE BeneluxYoung Research Symposium in Electrical Power Engineering,No. 28, Ghent, Begium, Apr. 27-28, p.5,2006.
  11. D. Casadei, G. Serra, A. Tani, “Implementation ofdirect torque control algorithm for induction motorsbased on discrt space vector modulation,” IEEETrans. on Power Electronics. Vol. 15, No. 4, pp. 769-777, July 2000. https://doi.org/10.1109/63.849048
  12. C. French, P. Acarnley, “Direct torque control ofpermanent magnet drives,” IEEE Trans. Ind. Appl.Vol. 32 No. 5, pp. 1080-1088, Sep./Oct. 1996. https://doi.org/10.1109/28.536869
  13. B. Hredzak, S., Gair, J.F., Eastham, “Elimination oftorque pulsations in a direct drive EV wheel motor,”IEEE Trans.actions Magn. Vol. 32, No. 5, pp. 5010-5012, Sep. 1996. https://doi.org/10.1109/20.539359
  14. P. Pragasen, R. Krishnan. “Modeling, Simulation, andAnalysis of Permanent Magnets Motor Drives, Part I:The Permanent Magnets Synchronous Motor Drive,”IEEE Transactions on Industry Applications. Vol. 25,No.2, 265-273, 1989. https://doi.org/10.1109/28.25541
  15. D.A.J. Rand, R. Woods, R.M. DELL. “Batteries forelectric vehicles,” Research Studies. Press Ltd. 1997.
  16. L.T. Lam, R. Lovey, “Development of ultra-batteryfor hybrid-electric vehicle applications,” Elservier,Power Sources, Vol. 158, pp. 1140-1148, 2006. https://doi.org/10.1016/j.jpowsour.2006.03.022
  17. S. Kandler, C.Y. Wang, “Power and thermal characterizationof Lithium-Ion battery pack for hybridelectricvehicles”, Elservier, Power Sources, Vol. 160,pp. 662-673, 2006. https://doi.org/10.1016/j.jpowsour.2006.01.038
  18. J. Newan, K.E. Thomas, H. Hafezi, D.R. Wheeler,“Modeling of lithium-ion batteries,” J. Power Source,Vol. 119-121, pp. 838-843, Jun. 2003. https://doi.org/10.1016/S0378-7753(03)00282-9
  19. P.M. Gomadam, J.W. Weidner, R.A. Dougal, R.E.White, “Mathematical modeling of lithium-ion andnickel battery systems,” J. Power Source, Vol. 110,No. 2, pp.267-284, Aug. 2002. https://doi.org/10.1016/S0378-7753(02)00190-8
  20. Cao, Xianqing, Zang, Chunhua, Fan, Liping, “DirectTorque Controlled Drive for Permanent Magnet SynchronousMotor Based on Neural Networks andMulti Fuzzy Controllers,” IEEE International Conferenceon Robotics and Biomimetics, 2006. ROBIO'06. pp. 197-201, 2006.
  21. M. Vasudevan, R. Arumugam, “New direct torquecontrol scheme of induction motor for electric vehicles,”5th Asian Control Conference, Vol. 2, 20-23,pp. 1377-1383, 2004.
  22. S. Mir, M. E. Elbuluk and D. S. Zinger, “PI andFuzzy Estimators for Tuning the stator resistance indirect torque control of induction machines,” IEEETransactions Power Electronics, Vol. 13, No. 2, pp.279-287, March, 1998. https://doi.org/10.1109/63.662841
  23. T. Gillespice. “Fundamentals of vehicle dynamics,”Society of Automotive Engineers, ISBN 1-56091-199-9.
  24. Y. Hori, senior member IEEE, “Future vehicles driverby electricity and control research on four wheel motored-UOT electric march II,” IEEE Transactions onIndustrial Electronics, Vol. 51, No. 5, pp. 954-962,2004. https://doi.org/10.1109/TIE.2004.834944
  25. M. Jalili-Kharaajoo, F. Besharati, “Sliding mode tractioncontrol of an electric vehicle with four separatewheel drives,” in Proc. IEEE Conf. Emerging Technol-Factory Autom. (ETFA’03), Vol. 2, pp. 291-296,Sep. 16-19, 2003.
  26. R. Rajamani, Vehicle dynamics and control, ISBN 0-387-26396-9, Springer verlag, New York, 2005.
  27. D. Kim, S. Hwang, H. Kim, “Rear motor control for4WD hybrid electric vehicle stability,” IEEE Conf. pp.86-91, 2005.
  28. M. Ouladisine, H. Sheain, L.F. Dridman, H. Noura,“Vehicle parameters estimation and stability enhancementusing the principle of sliding mode,”American Control Conference, pp. 5224-5229, 2007.

피인용 문헌

  1. T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer vol.12, pp.2, 2012, https://doi.org/10.6113/JPE.2012.12.2.294
  2. Control Algorithms of Propulsion Unit with Induction Motors for Electric Vehicle vol.14, pp.2, 2014, https://doi.org/10.4316/AECE.2014.02012
  3. Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters vol.14, pp.5, 2014, https://doi.org/10.6113/JPE.2014.14.5.980
  4. Robust speed control method for permanent magnet synchronous motor vol.6, pp.7, 2012, https://doi.org/10.1049/iet-epa.2011.0384
  5. Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System vol.15, pp.5, 2015, https://doi.org/10.6113/JPE.2015.15.5.1244
  6. A New Multimachine Robust Based Anti-skid Control System for High Performance Electric Vehicle vol.9, pp.1, 2014, https://doi.org/10.5370/JEET.2014.9.1.214
  7. Dynamic modelling and simulation of a manual transmission based mild hybrid vehicle vol.112, 2017, https://doi.org/10.1016/j.mechmachtheory.2017.02.011
  8. Precise robust adaptive dynamic surface control of permanent magnet synchronous motor based on extended state observer vol.11, pp.5, 2017, https://doi.org/10.1049/iet-smt.2016.0252
  9. Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors vol.8, pp.3, 2013, https://doi.org/10.5370/JEET.2013.8.3.530
  10. Certainty equivalence adaptive speed controller for permanent magnet synchronous motor vol.22, pp.6, 2012, https://doi.org/10.1016/j.mechatronics.2012.04.007
  11. Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer vol.27, pp.3, 2012, https://doi.org/10.1109/TPEL.2011.2161488
  12. A new shared control for lane keeping and road departure prevention vol.54, pp.1, 2016, https://doi.org/10.1080/00423114.2015.1115882
  13. T–S Fuzzy-Model-Based Sliding-Mode Control for Surface-Mounted Permanent-Magnet Synchronous Motors Considering Uncertainties vol.60, pp.10, 2013, https://doi.org/10.1109/TIE.2012.2213554
  14. Fuzzy PD Speed Controller for Permanent Magnet Synchronous Motors vol.11, pp.6, 2011, https://doi.org/10.6113/JPE.2011.11.6.819
  15. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN vol.2014, 2014, https://doi.org/10.1155/2014/315634
  16. SDRE-Based Near Optimal Control System Design for PM Synchronous Motor vol.59, pp.11, 2012, https://doi.org/10.1109/TIE.2011.2174540
  17. Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors vol.12, pp.6, 2012, https://doi.org/10.6113/JPE.2012.12.6.904
  18. Comparative fuel economy, cost and emissions analysis of a novel mild hybrid and conventional vehicles 2018, https://doi.org/10.1177/0954407017736116
  19. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control vol.2017, 2017, https://doi.org/10.1155/2017/4125384