References
- A. Passaro and A. Starita, “Clustering particles formultimodal function optimization,” Proceedings ofECAI Workshop on Evolutionary Computation, Rivadel Garda, Italy, August 2006.
- R. Brits, A. P. Engelbrecht, and F. van den Bergh,“Scalability of niche PSO,” Proceedings of the IEEESwarm Intelligence Symposium (SIS '03), pp. 228-234,Indianapolis, IN, USA, April 2003.
- J. H. Seo, C. H. Im, S. Y. Kwak, C. G. Lee, H. K.Jung, “An improved PSO algorithm mimicking territorialdispute between groups for multimodal functionoptimization problems,” IEEE Trans. on Magnetics,Vol. 44, No. 6, pp. 1046-1049, 2008. https://doi.org/10.1109/TMAG.2007.914855
- B. Brandstaetter, “SMES optimization benchmark,TEAM Problem 22, 3 parameter problem,”http://www.igte.tu-graz.ac.at/archive/team_new/team3.php.
- J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”Proceedings of IEEE International Conferenceon Neural Networks (ICNN ’95), Vol. 4, pp.1942-1948, IEEE Service Center, Perth, Western Australia,November-December 1995. https://doi.org/10.1109/ICNN.1995.488968
- Y. Shi, R.C. Eberhart, “A modified particle swarmoptimizer,” Proceedings of the IEEE World Conferenceon Computational Intelligence, pp. 69-73, Anchorage,Alaska, May 1998.
- J. Kennedy, “The particle swarm: social adaptation ofknowledge,” Proceedings of IEEE Congress on Evolutionary Computation (CEC ’97), pp. 303-308, Indianapolis,IN, USA, April 1997.
- J. Kennedy and R. Mendes. “Neighborhood topologiesin fully informed and best-of-neighborhood particleswarms,” IEEE Transactions on Systems, Man,and Cybernetics, Part C, 36(4): pp. 515-519, 2006. https://doi.org/10.1109/TSMCC.2006.875410
- R. C. Eberhart and J. Kennedy, “A new optimizerusing particle swarm theory,” Proceedings of the 6thIEEE International Symposium on Micro Machineand Human Science (MHS '95), pp. 39-43, Nagoya,Japan, October 1995.
- J. Kennedy, R. Mendes, “Population structure andparticle swarm performance,” Proceedings of theEvolutionary Computation on 2002. CEC '02. Proceedingsof the 2002 Congress, pp. 1671-1676, May12-17, 2002.
- R. Brits, A. P. Engelbrecht, and F. van den Bergh,“Solving systems of unconstrained equations usingparticle swarm optimization,” Proceedings of theIEEE International Conference on Systems, Man andCybernetics (SMC ’02), Vol. 3, pp. 100-105, Hammamet,Tunisia, October 2002.
- R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Aniching particle swarm optimizer,” Proceedings ofthe 4th Asia-Pacific Conference on Simulated Evolutionand Learning (SEAl ’02), Vol. 2, pp. 692-696,Singapore, November 2002.
- E. Thie'mard, “Economic Generation of Low-Discrepancy Sequences with a b-ary Gray Code,” Department of Mathematics, Ecole Polytechnique Fe´ de´rale de Lausanne, Lausanne, Switzerland.
- J. Kennedy, “Small worlds and mega-minds: effectsof neighborhood topology on particle swarm performance,”Proceedings of the IEEE Congress onEvolutionary Computation, pp. 1931-1938, July 1999.
- F. van den Bergh and A. P. Engelbrecht, “A new locallyconvergent particle swarm optimizer,” Proceedingsof the IEEE International Conference on Systems,Man and Cybernetics (SMC ’02), Vol. 3, pp. 96-101,Hammamet, Tunisia, October 2002.
- F. van den Bergh, “An Analysis of Particle SwarmOptimizers.” Ph.D. thesis, Department of ComputerScience, University of Pretoria, Pretoria, South Africa,2002.
- F. van den Bergh, A.P. Engelbrecht, “A study of particleswarm optimization particle trajectories,” InformationScience, pp. 937-971, August 2006.
Cited by
- Improved E&S Vector Hysteresis Model for the Precise Modeling of Vector Magnetic Properties of Electrical Steel Sheet vol.60, pp.9, 2011, https://doi.org/10.5370/KIEE.2011.60.9.1684
- A Global Optimization Algorithm for Electromagnetic Devices by Combining Adaptive Taylor Kriging and Particle Swarm Optimization vol.49, pp.5, 2013, https://doi.org/10.1109/TMAG.2013.2238907
- Optimal Design of a Thomson-Coil Actuator Utilizing a Mixed-Integer-Discrete-Continuous Variables Global Optimization Algorithm vol.47, pp.10, 2011, https://doi.org/10.1109/TMAG.2011.2157311
- A Novel Subdivision-Based Optimal Design Algorithm for Multidimensional Electromagnetic Problems vol.51, pp.11, 2015, https://doi.org/10.1109/TMAG.2015.2448798