DOI QR코드

DOI QR Code

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems

태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술

  • 조현철 (울산과학대학 전기전자학부) ;
  • 심광열 (울산과학대학 전기전자학부)
  • Received : 2010.04.12
  • Accepted : 2010.08.16
  • Published : 2010.09.01

Abstract

A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

Keywords

References

  1. 조현철, 유수복, 이권순, "태양광 컨버터 시스템의 과도 응답 개선을 위한 비선형 적응제어 및 안정성 해석," 제어로봇시스템학회 논문지, vol. 15, no. 12, pp. 1175- 1183, 2009.
  2. C. Larbes, S. M. Ait-Cheikh, T. Obeidi, A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power tracking in photovoltaic system," Renewable Energy, vol. 34, pp. 2093-2100, 2009. https://doi.org/10.1016/j.renene.2009.01.006
  3. N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Trans. on Power Electronics, vol. 20, no. 4, pp. 963-973, 2005. https://doi.org/10.1109/TPEL.2005.850975
  4. D. Sera, R. Teodorescu, "Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimation," Annual Conference of IEEE, pp. 2195-2199, Nov. 2008.
  5. K.-H. Chao, S.-H. Ho, M.-H. Wang, "Modeling and fault diagonsis of a photovoltaic system," Electric Power Systems Research, vol. 78, pp. 97-105, 2008. https://doi.org/10.1016/j.epsr.2006.12.012
  6. 조현철, 이진우, 이영진, 이권순, "신경회로망 독립성분 해석을 이용한 음향센서 기반 대전력기기의 고장진단 알고리즘," 대한전기학회 논문지, vol. 57, no. 5, pp. 881-888, 2008.
  7. A. Cichocki, R. Unbehauen, Neural networks for optimization and signal processing, New York, Wiley, 1993.
  8. S. M. Kay, Fundamentals of statistical signal processing: Detection theory, New Jersey, Prentice Hall, 1998.