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TIGHT CLOSURE OF IDEALS RELATIVE TO
MODULES

H. Ansari-Toroghy and F. Dorostkar

Abstract. In this paper the dual notion of tight closure of ideals
relative to modules is introduced and some related results are ob-
tained.

1. Introduction

Throughout this paper R will denote a commutative Noetherian ring
with identity and with a positive prime characteristic p. Further N will
denote the set of natural integers.

The main idea of tight closure of an ideal in a commutative Noether-
ian ring (with a positive prime characteristic) was introduce by Hochster
and Huneke in [5]. It is appropriate for us to begin by briefly summa-
rizing some of main aspects.

Let I be an ideal of R. An element x of R is said to be in tight closure,
I∗, of I, if there exists an element c ∈ R◦ (here R◦ denotes the subset of R
consisting of all elements which are not contained in any minimal prime
ideal of R) such that for all sufficiently large e, cxpe ∈ (ip

e
: i ∈ I). The

ideal (ip
e

: i ∈ I) is denoted by I [pe] and is called the eth Frobenius power
of I. In particular if I = (a1, a2, ..., an), then I [pe] = (ape

1 , ape

2 , ..., ape

n ).
In the remainder of this paper, to simplify notation, we will write q

to stand for a power pe of p. Then I [pe] = I [q].
For any ideals I and J , I [q] + J [q] = (I + J)[q], I [q]J [q] = (IJ)[q], in

particular if n is any positive integer, (In)[q] = (I [q])n.
Now let M be an R−module and let I be an ideal of R. In this

paper we will introduce the notion of tight closure I∗[M ] of an ideal I of
R relative to M (see 2.1) and establish some properties of this concept
which reflect results of tight closure in the classical situation.
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Let M be an R−module. A prime ideal P of R is said to be an
associated prime of M if there exists an element x ∈ M such that
AnnR(x) = P (see [7]). The set of associated primes of M is denoted
by AssR(M).

We shall follow Macdonald,s terminology (see [6]) concerning sec-
ondary representation. So whenever an R−module M has a secondary
representation, then the set of attached primes of M , which is uniquely
determined, is denoted by AttR(M).

Throughout the remainder of this paper R◦ will denote the subset
of R consisting of all elements which are not contained in any minimal
prime ideal of R.

The reader is referred to [10] for the tight closure of an ideal.

2. Tight closure of an ideal relative to module

Definition 2.1. Let M be an R−module and I and J be ideals of R.
We say that I is an F−reduction of the ideal J relative to M , if I ⊆ J
and there exists c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cJ [q]) for all q À 0.

It is straightforward to see that if I is an F−reduction of an ideal J of
R relative to M and also an F−reduction of an ideal J ′ of R relative to
M , then I is an F−reduction of the ideal J + J ′ relative to M . Thus,
since R is a Noetherian ring, the set of ideals of R which have I as an
F−reduction relative to M has a unique maximal member, denoted by
I∗[M ] and called the tight closure of I relative to M . This is in fact the
largest ideal which has I as F−reduction relative to M .

The proof of the next proposition is easy and is omitted.

Proposition 2.2. Let M be an R−module and I, J , I ′, J ′ and K
be ideals of R.

(a) If I is an F−reduction of J relative to M and J is an F−reduction
of K relative to M , then I is an F−reduction of K relative to M .

(b) If I is an F−reduction of J relative to M and I ′ is an F−reduction
of J ′ relative to M , then II ′ is an F−reduction of JJ ′ relative to
M .

(c) If I ⊆ J ⊆ K and I is an F−reduction of K relative to M , then I
is an F−reduction of J relative to M and J is an F−reduction of
K relative to M .
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(d) If I is an F−reduction of J relative to M and I ′ is an F−reduction
of J ′ relative to M , then I +I ′ is an F−reduction of J +J ′ relative
to M .

Definition 2.3. Let M be an R−module and let I be an ideal of R.
An element x of R is said to be tight dependent on I relative to M , if
there exists an element c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cxq) for all q À 0.

Lemma 2.4. Let M be an R−module and I be an ideal of R. An
element x of R is tight dependent on I relative to M if and only if I is
an F−reduction of I + Rx relative to M .
Proof. The proof is straightforward.

Theorem 2.5. Let M be an R−module and I be an ideal of R. Then

I∗[M ] = {x ∈ R : x is tight dependent on I relative to M}.
Proof. Let x ∈ R be tight dependent on I relative to M. Then I
is an F−reduction of I + Rx relative to M by Lemma 2.4. Hence
I + Rx ⊆ I∗[M ] so that x ∈ I∗[M ]. Now let x′ ∈ I∗[M ]. Then I ⊆
(I + Rx′) ⊆ I∗[M ]. Since I∗[M ] is an F−reduction of I relative to M,
I +Rx′ is an F−reduction of I relative to M by Proposition 2.2(c). Now
the claim follows from Lemma 2.4.

Lemma 2.6. Let M be an R−module. We have the following.

(a) If dimR = 0 then
√

AnnR(M) = 0∗[M ].
(b) If I be an ideal of R with ht(I) > 0, then there exists d ∈ R◦ such

that (0 :M I [q]) ⊆ (0 :M dxq) for every q = pe.

Proof. (a) Clearly,
√

AnnR(M) ⊆ 0∗[M ]. To see the reverse inclusion,
let t ∈ 0∗[M ]. Then there exists c ∈ R◦, such that

(0 :M 0[q]) ⊆ (0 :M ctq)

for all q À 0. Since dimR = 0, R◦ = R \
⋃

P∈Spec(R)

P. Thus c /∈ z(M).

This implies that (0 :M tq) = M for all q À 0. Hence
√

AnnR(M) =
0∗[M ].

(b) Since I ⊆ I∗[M ], we have ht(I∗[M ]) > 0. Hence I∗[M ] =<

x1, ..., xn >, where x1, ..., xn ∈ I∗[M ] ∩ R◦. For each xi ∈ I∗[M ] (1 ≤
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i ≤ n), there exists ci ∈ R◦ and qi = pei such that

(0 :M I [q]) ⊆ (0 :M cix
q
i ) for every q ≥ qi.

Set di = cix
qi . Then it is easy to see that

(0 :M I [q]) ⊆ (0 :M dix
q
i ) for every q = pe.

Let d = d1d2...dn. Then we have

(0 :M I [q]) ⊆ (0 :M dxq) for every q = pe

where d ∈ R◦.

Lemma 2.7. Let M be an R−module. Then the operation I → I∗[M ]

is semiprime on the set of ideals of R in the sense of [9]. More precisely
for all ideals I and J of R the following conditions hold.

(a) I ⊆ I∗ ⊆ I∗[M ].
(b) If I ⊆ J , then I∗[M ] ⊆ J∗[M ].
(c) (I∗[M ])∗[M ] = I∗[M ].
(d) I∗[M ]J∗[M ] ⊆ (IJ)∗[M ].

Proof. (a), (b), and (c) are clear.
(d) Use Lemma 2.4 and Proposition 2.2 (b).

Corollary 2.8. Let M be an R-module and let Λ be an index set.
Then for every ideals I and J of R, we have

(a) (I∗[M ]J∗[M ])∗[M ] = (IJ)∗[M ],
(b) (

∑
i∈Λ

(Ii)∗[M ])∗[M ] = (
∑
i∈Λ

Ii)∗[M ],

(c) (
⋂
i∈Λ

(Ii)∗[M ])∗[M ] =
⋂

i∈Λ

(Ii)∗[M ].

Proof. By Lemma 2.7, the operation I → I∗[M ] is semiprime on the set
of ideals of R. It is easy see that if Λ is an index set and I → Ix is any
semiprime operation on the set of ideals of R, then we have

(IxJx)x = (IJ)x, (
∑

i∈Λ

(Ii)x)x = (
∑

i∈Λ

Ii)x, (
⋂

i∈Λ

(Ii)x)x =
⋂

i∈Λ

(Ii)x.

Definition 2.9. Let M be an R−module. The ideal I of R is tightly
closed relative to M , if I∗[M ] = I.

Lemma 2.10. Let M be an R−module. Then we have the following.
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(a) The intersection of ideals tightly closed relative to M is tightly
closed relative to M .

(b) If I and J are ideals of R and I is tightly closed relative to M ,
then so is (I :R J).

Proof. (a) This follows from Corollary 2.8 (c).

(b) Set J =
n∑

i=1
Rui. Thus (I :R J) =

n⋂
i=1

(I :R Rui). So by part (a), it

is enough to prove the assertion for the case that J is a principal ideal.
So let J = Ru and let x ∈ (I : J)∗[M ]. Then there exists c ∈ R◦ such
that

(0 :M (I : u)[q]) ⊆ (0 :M cxq) for all q À 0.

Since (I : u)[q] ⊆ (I [q] : uq), it follows that

(0 :M (I [q] : uq)) ⊆ (0 :M cxq) for all q À 0.

This in turn implies that

(0 :M I [q]) ⊆ (0 :M c(ux)q) for all q À 0.

Thus ux ∈ I∗[M ] = I by Theorem 2.5. This yields that

(I : Ru)∗[M ] ⊆ (I : Ru).

The reverse inclusion follows from Lemma 2.7 (a). Hence (I : Ru)∗[M ] =
(I : Ru) as desired.

Remark 2.11. Let M be an R−module. An element x ∈ R is said
to be M−coregular if xM = M . Further an ideal I of R is said to be
M−coregular if there exists an element x ∈ I such that xM = M .

Theorem 2.12. Let M be an R−module and let I, J , and K be ideals
of R. If K consists of M−regular elements or K is an M−coregular
principal ideal, then we have

(IK)∗[M ] ⊆ (JK)∗[M ] ⇒ I∗[M ] ⊆ J∗[M ].

Proof. Let x ∈ I∗[M ]. By Lemma 2.7 (d), we have

xK ⊆ (IK)∗[M ] ⊆ (JK)∗[M ].

Now we can find c ∈ R◦ such that

(0 :M J [q]K [q]) ⊆ (0 :M cxqK [q])

for all q À 0. If K consists of M−regular elements or K is an M−coregular
principal ideal, then K [q] consists of M−regular elements or K [q] is an
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M−coregular principal ideal. This follows that

(0 :M J [q]) ⊆ (0 :M cxq)

for all q À 0. Hence x ∈ J∗[M ] and the proof is completed.

Corollary 2.13 (Cancelation law). Let M be an R−module and let
I, J , and K be ideals of R. If K consists of M−regular elements or K
is an M−coregular principal ideal, then

(IK)∗[M ] = (JK)∗[M ] ⇒ I∗[M ] = J∗[M ].

Proof. This follows from Theorem 2.12.

Theorem 2.14. Let M be an R−module. Let I and K be ideals
of R. If K consists of M−regular elements or K is an M−coregular
principal ideal, then

(I∗[M ]K∗[M ] :R K∗[M ]) = ((IK)∗[M ] :R K∗[M ]) = ((IK)∗[M ] :R K)

= (I∗[M ]K :R K) = I∗[M ]

Proof. It is clear that

I∗[M ] ⊆ (I∗[M ]K∗[M ] :R K∗[M ]) ⊆ ((IK)∗[M ] :R K∗[M ]) ⊆ ((IK)∗[M ] :R K)

and
(I∗[M ]K :R K) ⊆ ((IK)∗[M ] :R K).

Hence it is enough to prove that ((IK)∗[M ] :R K) ⊆ I∗[M ]. Since IK

is an F−reduction of (IK)∗[M ] relative to M , there exists c ∈ R◦ such
that

(0 :M (IK)[q]) ⊆ (0 :M c((IK)∗[M ])[q]) for all q À 0.

Since ((IK)∗[M ] :R K)K ⊆ (IK)∗[M ],

(0 :M I [q]K [q]) ⊆ (0 :M c((IK)∗[M ] :R K)[q]K [q]) for all q À 0.

If K consists of M−regular elements or K is an M−coregular prin-
cipal ideal, then K [q] consists of M−regular elements or K [q] is an
M−coregular principal ideal. This implies that

(0 :M I [q]) ⊆ (0 :M c((IK)∗[M ] :R K)[q]) for all q À 0.

Thus I is an F−reduction of ((IK)∗[M ] :R K) relative to M . So

((IK)∗[M ] :R K) ⊆ I∗[M ]

and the proof is completed.

Corollary 2.15. Let I be an ideal of R and let M be an R−module.



Tight closure of ideals relative to modules 681

If I consists of M−regular elements or I is an M−coregular principal
ideal, then for 0 < m < n, we have

((In)∗[M ] :R (Im)∗[M ]) = ((In)∗[M ] :R Im)

= ((In−m)∗[M ](Im)∗[M ] :R (Im)∗[M ])
= ((In−m)∗[M ]Im :R Im) = (In−m)∗[M ]

Proof. This follows from Theorem 2.14.

Corollary 2.16. Let M be an R−module. Let I and K be ideals
of R. If K consists of M−regular elements or K is an M−coregular
principal ideal, then

AssR(R/I∗[M ]) ⊆ AssR(R/(I∗[M ]K)) ∩AssR(R/(IK)∗[M ])

Proof. Let P ∈ AssR(R/I∗[M ]). Then there exists an element x ∈ R
such that

P = (I∗[M ] :R x).
Then by Theorem 2.14,

P = ((IK)∗[M ] :R Kx) = (I∗[M ]K :R Kx).

So there exist a, b ∈ R such that P = ((IK)∗[M ] :R a) and P =
(I∗[M ]K :R b). Hence P ∈ AssR(R/(I∗[M ]K)) ∩AssR(R/(IK)∗[M ]).

Theorem 2.17. Let M be an R−module. Let I be an ideal of R
such that I consists of M−regular elements or I is an M−coregular
principal ideal.

(a) The sequence of sets (AssR(R/(In)∗[M ]))n∈N is an increasing se-
quence.

(b) If A(n) = AssR(R/(In)∗[M ]) and B(n) = AssR((In−1)∗[M ])/(In)∗[M ]),
then A(n) = B(n) for every n ∈ N

Proof. (a) Let n ∈ N and let P ∈ AssR(R/(In)∗[M ]). Then there exists
c ∈ R such that P = ((In)∗[M ] :R c). Now by Corollary 2.15, we have

P = ((In+1)∗[M ] :R cI).

So there exists y ∈ R such that P = ((In+1)∗[M ] :R y). This implies that
P ∈ AssR(R/(In+1)∗[M ]).

(b) Let n ∈ N. It is clear that B(n) ⊆ A(n). Let P ∈ A(n). Then
there exists c ∈ R such that P = ((In)∗[M ] :R c). By Lemma 2.7(d),
(I∗[M ])n ⊆ (In)∗[M ]. So I∗[M ] ⊆ P . Thus c ∈ ((In)∗[M ] :R I∗[M ]). But
((In)∗[M ] :R I∗[M ]) = (In−1)∗[M ] by Corollary 2.15. Hence c ∈ (In−1)∗[M ]

so that P ∈ B(n) as required.
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We recall that (see [4]) the sequence of sets (AssR(R/In))n∈N is ul-
timately constant. we will denote the ultimate constant value of this
sequence by As∗(I, R).

Theorem 2.18. Let M be an R−module. Then for every ideal I
of R which consists of a regular element, the sequence of sets
(AssR((In)∗[M ]/In))n∈N is increasing and ultimately constant.

Proof. By [8, 8.1], there exists a positive integer m such that for n ≥ m,
we have

(In+1 :R I) = In.

Let n ≥ m and let P ∈ AssR((In)∗[M ]/In). Then there exists x ∈
(In)∗[M ] such that P = (In :R x). It follows that P = (In+1 :R xI).
Now by using Lemma 2.7(d), we have

xI ⊆ (In)∗[M ]I ⊆ (In)∗[M ]I∗[M ] ⊆ (In+1)∗[M ].

Hence there exists c ∈ (In+1)∗[M ] such that P = (In+1 :R c). Thus
for n ≥ m, the sequence of sets (AssR((In)∗[M ]/In))n∈N becomes an
increasing sequence. Now the result follows from the fact that for large
n,

AssR((In)∗[M ]/In) ⊆ AssR(R/In) ⊆ As∗(I, R).

Corollary 2.19. Let E be an injective R−module. Then for every ideal
I of R which consists of a regular element, the sequence of sets

(AttR((0 :E In)/(0 :E (In)∗[E])))n∈N,

is increasing and ultimately constant.

Proof. This follows from Theorem 2.18 and the fact that for every
n ∈ N, we have

AttR(HomR((In)∗[E]/In, E)) =

{P ∈ AssR((In)∗[E]/In) : P ⊆ Q for some Q ∈ AssR(E)}
by [2, 3.2].

Lemma 2.20. Let I be an ideal of R. Further let M be a finitely gener-
ated R−module such that

√
AnnR(M) = AnnR(M). If for all minimal

primes P of R, the image of x modulo P is in the ( I+P
P )∗[M/PM ], then

x ∈ I∗[M ].
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Proof. Let Min(R) = {P1, ...., Pn} and let x ∈ ( I+Pi
Pi

)∗[M/PiM ] for every
i = 1, ...., n. Then for each i (1 ≤ i ≤ n), there exists ci = ci + Pi ∈
(R/Pi)◦ and qi = pei such that

(0 :M/PiM (
I + Pi

Pi
)[q]) ⊆ (0 :M/PiM ci xq) for all q ≥ qi.

Since for each i (1 ≤ i ≤ n), Rci + Pi is not contained in P1 ∪ ... ∪ Pn,
we can find c′i ∈ R◦ such that for all q ≥ qi,

(0 :M/PiM (
I + Pi

Pi
)[q]) ⊆ (0 :M/piM c′i xq).

Set q′ = Max{q1, q2, ..., qn}. Let q ≥ q′ and let m ∈ (0 :M I [q]). Further

for each i (1 ≤ i ≤ n), choose 0 6= λi ∈
n⋂

j=1

j 6=i

Pj \ Pi. Then for every

i = 1, ..., n,
c′iλix

qm ∈
√

Ann(M) M.

Since
√

Ann(M) = Ann(M), c′iλix
qm = 0 for every i = 1, ...., n. Set

c′′ =
n∑

i=1
c′iλi. It follows that c′′xqm = 0, where c′′ ∈ R◦. Therefore

(0 :M I [q]) ⊆ (0 :M c′′xq) for all q ≥ q′.

This completes the proof.

Definition 2.21 (see [1, 1.1, 2.5]). Let I be an ideal of R. Let T
be a subset of Spec(R). The notation I(T ) will denote (I if I=R and)
, if I is a proper, the intersection of those primary terms in a minimal
primary decomposition of I which are contained in at least one member
of T (the intersection of an empty family of ideals of R is assumed to
be R itself). This definition is unambiguous and I({P}) is denoted by
I(P ). It is clear that I(P ) = (IRP )c is just the contraction back to R of
the extension of I to RP under the natural ring homomorphism. Also
we have I(T ) =

⋂
P∈T

I(P ) and (J ∩ K)(T ) = (J(T ) ∩ K(T )) for every

ideal J and K of R.

Lemma 2.22. Let I be an ideal of R and M be an R−module. Then

I∗(AssR(M)) ⊆ I∗[M ].

Proof. There exists c ∈ R◦ such that

c(I∗)[q] ⊆ I [q] for all q À 0.
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By [3, 2.7], we have (0 :M (I∗)[q]) = (0 :M (I∗)[q](AssR(M))). Then

(0 :M I [q]) ⊆ (0 :M c(I∗)[q](AssR(M))).

It follows that

(0 :M I [q]) ⊆ (0 :M c(I∗(AssR(M))[q]) for all q À 0.

Hence I∗(AssR(M)) is an F−reduction of I relative to M so that
I∗(AssR(M)) ⊆ I∗[M ]. This completes the proof.

3. Tight closure of an ideal relative to injective modules

Definition 3.1 (see [1]). Let I and J be ideals of R and let E be an
injective R−module. Then I is said to be a reduction of J relative to E
if I ⊆ J and there exists n ∈ N such that (0 :E IJn) = (0 :E Jn+1). An
element x of R is said to be integrally dependent on I relative to E if
there exists n ∈ N such that

(0 :E
n∑

i=1

xn−iIi) ⊆ (0 :E xn).

The set of ideals of R which have I as a reduction relative to E has a
unique maximal member, which denoted by I∗(E) and called the integral
closure of I relative to E.

Lemma 3.2. Let I be ideals of R and let E be an injective R−module
such that

⋃

P∈AssR(E)

P ⊆
⋃

P∈Min(R)

P . Then I∗[E] ⊆ I∗(E).

Proof. Let x ∈ I∗[E]. Then there exists a positive integer q and
c ∈ R \ ⋃

P∈Min(R)

P such that

(0 :E I [q]) ⊆ (0 :E cxq).

Since Iq ⊆
q∑

i=1
xq−iIi,

(0 :E
q∑

i=1

xq−iIi) ⊆ (0 :E Iq) ⊆ (0 :E I [q]).
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Hence (0 :E
∑q

i=1 xq−iIi) ⊆ (0 :E cxq). Now since c ∈ R \ ⋃
P∈AssR(E)

P ,

(0 :E
q∑

i=1

xq−iIi) ⊆ (0 :E xq).

Hence x is integrally dependent on I relative to E and the proof is com-
pleted by [1 , 2.7].

Proposition 3.3. Let P ∈ Spec(R) and E = E(R/P ) ( where for
an R−module L, we will use E(L) to denote the injective envelope of
L). Suppose that I is an ideal of R. We have the following.

(a) If x ∈ I∗[E], then x
1 ∈ (IRP )∗.

(b) If P ∈ V (
⋃
q

Ass R
I[q] ), then x ∈ I∗[E] if and only if x

1 ∈ (IRP )∗.

Proof. (a) Let x ∈ I∗[E]. Then there exists c ∈ R◦, such that

(0 :E I [q]) ⊆ (0 :E cxq).

Then c
1

xq

1 RP ⊆ I [q]RP = (IRP )[q] by [1, 1.6]. Since c
1 ∈ (RP )◦, x

1 ∈
(IRP )∗.

(b) (⇒) It follows from (a). Conversely let x
1 ∈ (IRP )∗. Then there

exists c
1 ∈ (RP )◦ such that c

1
xq

1 RP ⊆ (IRP )[q] = I [q]RP . Then

(0 :E I [q]) ⊆ (0 :E cxq).

by [1, 1.6]. By choice of P , we have c ∈ R◦ so that x ∈ I∗[E]. This
completes the proof.

Remark 3.4. Let I be an ideal of R and let E be an injective R−module.
Then I∗(E) = I−(AssR(E)), where I− is integral closure of ideal I [1,
2.6].

Theorem 3.5. Let I be an ideal of R and let E be an injective
R−module.

(a) If I is generated by at most n elements, then for all m ≥ 0 we have

(Im+n)∗(E) ⊆ (Im+1)∗[E].

(b) If I is generated by a regular sequence, then

I∗[E] = I∗(AssR(E)).



686 H. Ansari-Toroghy and F. Dorostkar

Proof. (a) By Briançon-Skoda theorem, for all m ≥ 0,

(Im+n)− ⊆ (Im+1)∗.

Now by using Remark 3.4 and Lemma 2.22, we have

(Im+n)∗(E) = (Im+n)−(AssR(E)) ⊆ (Im+1)∗(AssR(E)) ⊆ (Im+1)∗[E].

(b) We have E ∼= ⊕
P∈AssR(E)

E(R/P ). Then I∗[E] ⊆ ⋂
P∈AssR(E)

I∗[E(R/P )].

But by using Proposition 3.3 (a), for every P ∈ AssR(E), we have
I∗[E(R/P )] ⊆ I∗(P ). Therefore

I∗[E] ⊆
⋂

P∈AssR(E)

I∗(P ) = I∗(AssR(E)).

Now the assertion follows from Lemma 2.22 and the proof is completed.
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