DOI QR코드

DOI QR Code

A GROWING ALGEBRA CONTAINING THE POLYNOMIAL RING

  • Received : 2010.06.09
  • Accepted : 2010.09.01
  • Published : 2010.09.25

Abstract

There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra (see [2], [3], [4], [5], [6], [10], [13], [15], [16]). We and all the derivations of the growing algebra WN($e^{{\pm}x_1x_2x_3}$, 0, 3)[1] with the set of all right annihilators $T_3$ = $\{id,\;\partial_1,\;\partial_2,\;\partial_3\}$ in the paper. The dimension of $Der_{non}$(WN($e^{{\pm}x_1x_2x_3}$, 0, 3)$_{[1]}$) of the algebra WN($e^{{\pm}x_1x_2x_3}$, 0, 3)$_{[1]}$ is one and every derivation of the algebra WN($e^{{\pm}x_1x_2x_3}$, 0, 3)$_{[1]}$ is outer. We show that there is a class P of purely outer algebras in this work.

Keywords

References

  1. Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakianathan, Lie admissible non-associative algebras. Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120. https://doi.org/10.1142/S1005386705000106
  2. Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28, No. 3, Hadronic Journal, 2005, 287-295.
  3. Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, Vol. 29, No. 2, 2007, 213-222. https://doi.org/10.5831/HMJ.2008.30.2.273
  4. Seul Hee Choi, New algebras using additive abelian groups I, Honam Mathematical Journal, Vol. 31, No. 3, 2009, 407-419. https://doi.org/10.5831/HMJ.2009.31.3.407
  5. Seul Hee Choi and Ki-Bong Nam, "Weyl type non-associative algebra using additive groups I." Algebra Colloquium, Volume 14 (2007), 479-488, Number 3. 2007. https://doi.org/10.1142/S1005386707000430
  6. Seul Hee Choi and Ki-Bong Nam, "Derivations of a restricted Weyl Type Algebra I", Rocky Mountain Math. Journals, Volume 37, Number 6, 2007, 67-84. https://doi.org/10.1216/rmjm/1181069320
  7. Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, "Derivations of a restricted Weyl type algebra containing the polynomial ring", Communication in Algebra, Volume 36, Issue 9 September 2008, 3435 - 3446. https://doi.org/10.1080/00927870802107835
  8. I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Mathematical association of America, 100-101.
  9. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21.
  10. T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202.
  11. V. G. Kac, DeX-X-SCRIPTion of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.
  12. Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576.
  13. Jongwoo Lee and Ki-bong Nam, "Non-Associative Algebras containing the Matrix Ring", Linear Algebra and its Applications Volume 429, Issue 1, 1 July 2008, Pages 72-78. https://doi.org/10.1016/j.laa.2008.02.005
  14. Ki-Bong Nam, Generalized W and H Type Lie Algebras, Algebra Colloquium 6:3, (1999), 329-340.
  15. Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500.
  16. Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No. 3, 159-164.
  17. D. P. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998).
  18. R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138.