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GENERAL TYPES OF (α, β)-FUZZY IDEALS OF
HEMIRINGS

Y. B. Jun, W. A. Dudek, M. Shabir and M. S. Kang*

Abstract

W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of
(α, β)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the
generalization of their results on (α, β)-fuzzy ideals of hemirings. As a
generalization of the notions of (α, ∈ ∨ q)-fuzzy left (right) ideals, (α,
∈∨ q)-fuzzy h-ideals and (α, ∈∨ q)-fuzzy k-ideals, the concepts of (α, ∈
∨ qm)-fuzzy left (right) ideals, (α, ∈∨ qm)-fuzzy h-ideals and (α, ∈∨ qm)-
fuzzy k-ideals are defined, and their characterizations are considered.
Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an (α,
∈ ∨ qm)-fuzzy left (right) ideal (resp. (α, ∈ ∨ qm)-fuzzy h-ideal, (α,
∈ ∨ qm)-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals)
of a hemiring are considered.

1. Introduction

Hemirings (semirings with zero and commutative addition) which pro-
vide a common generalization of rings and distributive lattices arise nat-
urally in such diverse areas of mathematics as combinatorics, functional
analysis, graph theory, automata theory, formal language theory, mathe-
matical modelling of quantum physics and parallel computation systems
(see for example [3, 12, 13, 14]). Using the concept of soft sets which is
introduced by Molodtsov, Feng, Jun and Zhao [10] initiated the study
of soft semirings. Fuzzy semirings were first investigated in [2] and [1].
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Fuzzy k-ideals of semirings were studied by many authors, for exam-
ple [11, 19]. Fuzzy h-ideals of hemirings were studied in [19, 23]. The
idea of fuzzy point and its “belongingness” and “quasicoincidence” with
a fuzzy set were given by Pu and Liu [20]. In [6], Bhakat and Das used
this idea to define (α, β)-fuzzy subgroups. In [4, 5, 6, 7, 8], (α, β)-fuzzy
substructures of algebraic structures are discussed. Jun [15] considered
more general form of the notion of quasi-coincidence of a fuzzy point
with a fuzzy set, and generalized results in the papers [16, 17]. He in-
troduced the notions of (∈, qk)-fuzzy subalgebras and (∈,∈ ∨ qk)-fuzzy
subalgebras in a BCK/BCI-algebra, and investigated several properties.
He also discussed characterizations of (∈,∈∨ qk)-fuzzy subalgebra in a
BCK/BCI-algebra. Dudek et al. [9] restricted the study of such fuzzy
substructures to different types of (α, β)-fuzzy ideals, where α, β ∈ {∈, q,
∈∨ q , ∈∧ q}. Jun [18] discussed more updated results than [9, Theorem
4.17] and [9, Corollary 4.18].

In this paper, we generalize the properties of (α, β)-fuzzy ideals of
hemirings, which were studied in [9] by W. A. Dudek, M. Shabir and
M. Irfan Ali. We introduce the notions of (α, ∈∨ qm)-fuzzy left (right)
ideals, (α, ∈ ∨ qm)-fuzzy h-ideals and (α, ∈ ∨ qm)-fuzzy k-ideals which
are a generalization of the notions of (α, ∈∨ q)-fuzzy left (right) ideals,
(α, ∈ ∨ q)-fuzzy h-ideals and (α, ∈ ∨ q)-fuzzy k-ideals. We construct
an (α, ∈∨ qm)-fuzzy left (right) ideal (resp. (α, ∈∨ qm)-fuzzy h-ideal,
(α, ∈ ∨ qm)-fuzzy k-ideal) by using a left (right) ideal (resp. h-ideal,
k-ideal). We finally consider the implication-based fuzzy h-ideals (k-
ideals) of a hemiring. The important achievement of the study with an
(∈, ∈∨ qm )-fuzzy h-ideal (k-ideal) is that the notion of an (∈, ∈∨ q )-
fuzzy h-ideal (k-ideal) is a special case of an (∈, ∈∨ qm )-fuzzy h-ideal
(k-ideal), and thus so many results in the papers [9] are corollaries of our
results obtained in this paper.

2. Preliminaries

A semiring is an algebraic system (R, +, ·) consisting of a non-empty
set R together with two binary operations called addition (+) and mul-
tiplication (·), here x ·y will be denoted by juxtaposition for all x, y ∈ R,
such that (R, +) and (R, ·) are semigroups connected by the following
distributive laws: a(b + c) = ab + ac and (b + c)a = ba + ca for all
a, b, c ∈ R. An element 0 ∈ R is called a zero of R if a + 0 = 0 + a = a
for all a ∈ R. A semiring with zero and a commutative addition is called
a hemiring. An element 1 ∈ R is called the identity of R if 1a = a1 = a
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for all a ∈ R. A semiring with a commutative multiplication is called a
commutative semiring. A non-empty subset A of a semiring R is called a
subsemiring of R if it is closed under the addition and multiplication. A
non-empty subset I of a semiring R is said to be a left (resp. right) ideal
of R if it is closed under the addition and RI ⊆ I (resp. IR ⊆ I). A
left ideal which is also a right ideal is called an ideal. A left (resp. right)
ideal I of a hemiring R is called a left (resp. right) k-ideal of R if for any
a, b ∈ I and x ∈ R whenever x + a = b then x ∈ I. A left (resp. right)
ideal I of a hemiring R is called a left (resp. right) h-ideal of R if for any
a, b ∈ I and all x, y ∈ R whenever x + a + y = b + y then x ∈ I. Every
left (resp. right) h-ideal is a left (resp. right) k-ideal but the converse is
not true in general. For a set R, let

F (R) := {µ | µ : R → [0, 1] is a mapping}.
Elements of F (R) are called fuzzy subsets of R.

A fuzzy subset µ of a hemiring R is called a fuzzy left (resp. right)
ideal of R if it satisfies:

µ(x + y) ≥ min{µ(x), µ(y)},(2.1)
µ(yx) ≥ µ(x) (resp. µ(xy) ≥ µ(x))(2.2)

for all x, y ∈ R.
A fuzzy subset µ of a hemiring R is called a fuzzy left (resp. right)

h-ideal of R if it is a fuzzy left (resp. right) ideal of R such that for all
a, b, x, y ∈ R,

x + a + y = b + y =⇒ µ(x) ≥ min{µ(a), µ(b)}.(2.3)

A fuzzy subset µ of a hemiring R is called a fuzzy left (resp. right)
k-ideal of R if it is a fuzzy left (resp. right) ideal of R such that for all
a, b, x ∈ R,

x + a = b =⇒ µ(x) ≥ min{µ(a), µ(b)}.(2.4)

For any µ ∈ F (R) and any t ∈ [0, 1], the set

U(µ; t) = {x ∈ R | µ(x) ≥ t}
is called a level subset of µ. Given a point x ∈ R, consider a mapping

µ : R → [0, 1], y 7→
{

t ∈ (0, 1] if y = x,
0 if y 6= x.

Then µ ∈ F (R), and it is said to be a fuzzy point with support x and
value t and is denoted by [x; t].

For any µ ∈ F (R), we say that a fuzzy point [x; t] is
(i) contained in µ, denoted by [x; t] ∈ µ, ([20]) if µ(x) ≥ t.
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(ii) quasi-coincident with µ, denoted by [x; t] q µ, ([20]) if µ(x)+ t > 1.

For a fuzzy point [x; t] and µ ∈ F (R), we say that
(i) [x; t] ∈∨ q µ if [x; t] ∈ µ or [x; t] q µ.
(ii) [x; t] α µ if [x; t] α µ does not hold for α ∈ {∈, q,∈∨ q ,∈∧ q}.

3. Generalizations of (α, β)-fuzzy ideals

In what follows, let R denote a hemiring and m an arbitrary element
of [0, 1) unless otherwise specified. For a fuzzy point [x; t] and a fuzzy
subset µ of R, we say that

(i) [x; t] qm µ if µ(x) + t + m > 1.
(ii) [x; t] ∈∨ qm µ if [x; t] ∈ µ or [x; t] qm µ.
(iii) [x; t] ∈∧ qm µ if [x; t] ∈ µ and [x; t] qm µ.
(iv) [x; t] α µ if [x; t] α µ does not hold for α ∈ { qm ,∈∨ qm ,∈∧ qm }.
Definition 3.1. Let α ∈ {∈, q,∈ ∨ q }. A fuzzy subset µ of R is

called an (α, ∈∨ qm )-fuzzy left (resp. right) ideal of R if for any x, y ∈ R
and t, r ∈ (0, 1],

[x; t] α µ, [y; r] α µ ⇒ [x + y; min{t, r}] ∈∨ qm µ,(3.1)
[x; t] α µ ⇒ [yx; t] ∈∨ qm µ (resp. [xy; t] ∈∨ qm µ).(3.2)

An (α, ∈∨ qm )-fuzzy left and right ideal is called an (α, ∈∨ qm )-fuzzy
ideal. An (α, ∈∨ qm )-fuzzy left (resp. right) ideal of R with m = 0 is
called an (α, ∈∨ q )-fuzzy left (resp. right) ideal of R (see [9]).

Definition 3.2. Let α ∈ {∈, q,∈ ∨ q }. A fuzzy subset µ of R is
called an (α, ∈∨ qm )-fuzzy k-ideal of R if it is an (α, ∈∨ qm )-fuzzy ideal
of R satisfying the following condition:

x + a = b, [a; t] α µ, [b; r] α µ =⇒ [x;min{t, r}] ∈∨ qm µ(3.3)

for all a, b, x ∈ R and t, r ∈ (0, 1].

An (α, ∈∨ qm )-fuzzy k-ideal of R with m = 0 is called an (α, ∈∨ q )-
fuzzy k-ideal of R (see [9]).

Definition 3.3. Let α ∈ {∈, q,∈ ∨ q }. A fuzzy subset µ of R is
called an (α, ∈∨ qm )-fuzzy h-ideal of R if it is an (α, ∈∨ qm )-fuzzy ideal
of R satisfying the following condition:

x + a + y = b + y, [a; t] α µ, [b; r] α µ =⇒ [x;min{t, r}] ∈∨ qm µ(3.4)

for all a, b, x, y ∈ R and t, r ∈ (0, 1].
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An (α, ∈∨ qm )-fuzzy h-ideal of R with m = 0 is called an (α, ∈∨ q )-
fuzzy h-ideal of R (see [9]).

Theorem 3.4. If I is a left (resp. right) ideal of R, then a fuzzy
subset µ of R such that µ(x) ≥ 1−m

2 for x ∈ I and µ(x) = 0 otherwise is
an (∈,∈∨ qm )-fuzzy left (resp. right) ideal of R.

Proof. Let x, y ∈ R and t, r ∈ (0, 1] be such that [x; t] ∈ µ and
[y; r] ∈ µ. Then µ(x) ≥ t > 0 and µ(y) ≥ r > 0. Thus µ(x) ≥ 1−m

2

and µ(y) ≥ 1−m
2 , i.e., x, y ∈ I. Hence x + y ∈ I, which implies that

µ(x + y) ≥ 1−m
2 . If min{t, r} ≤ 1−m

2 , then µ(x + y) ≥ 1−m
2 ≥ min{t, r},

i.e., [x + y;min{t, r}] ∈ µ. If min{t, r} > 1−m
2 , then

µ(x + y) + min{t, r}+ m > 1−m
2 + 1−m

2 + m = 1,

i.e., [x + y;min{t, r}] qm µ. Therefore [x + y;min{t, r}] ∈ ∨ qm µ. Now,
let x ∈ R and t ∈ (0, 1] be such that [x; t] ∈ µ. Then µ(x) ≥ t, and so
µ(x) ≥ 1−m

2 , i.e., x ∈ I. Since I is a left ideal of R, we obtain yx ∈ I for
all y ∈ R. Hence µ(yx) ≥ 1−m

2 . If t ≤ 1−m
2 , then µ(yx) ≥ 1−m

2 ≥ t, i.e.,
[yx; t] ∈ µ. If t > 1−m

2 , then

µ(yx) + t + m > 1−m
2 + 1−m

2 + m = 1

and thus [yx; t] qm µ. Therefore [yx; t] ∈∨ qm µ. Similarly, [xy; t] ∈∨ qm µ.
Therefore µ is an (∈,∈∨ qm )-fuzzy left (resp. right) ideal of R.

Theorem 3.5. If I is a left (resp. right) ideal of R, then a fuzzy
subset µ of R such that µ(x) ≥ 1−m

2 for x ∈ I and µ(x) = 0 otherwise is
a (q,∈∨ qm )-fuzzy left (resp. right) ideal of R.

Proof. Let x, y ∈ R and t, r ∈ (0, 1] be such that [x; t] q µ and [y; r] q µ.
Then x, y ∈ I, µ(x)+ t > 1 and µ(y)+r > 1. Since x+y ∈ I, µ(x+y) ≥
1−m

2 . If min{t, r} ≤ 1−m
2 , then

µ(x + y) ≥ 1−m
2 ≥ min{t, r}.

Hence [x + y;min{t, r}] ∈ µ. If min{t, r} > 1−m
2 , then

µ(x + y) + min{t, r}+ m > 1−m
2 + 1−m

2 + m = 1

and so [x + y;min{t, r}] qm µ. Thus [x + y;min{t, r}] ∈∨ qm µ. Now let
x ∈ R and t ∈ (0, 1] be such that [x; t] q µ. Then µ(x) + t > 1, and
so x ∈ I. Since I is a left ideal of R, yx ∈ I for all y ∈ R. Hence
µ(yx) ≥ 1−m

2 . If t ≤ 1−m
2 , then µ(yx) ≥ 1−m

2 ≥ t, i.e., [yx; t] ∈ µ. If
t > 1−m

2 , then

µ(yx) + t + m > 1−m
2 + 1−m

2 + m = 1
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which implies that [yx; t] qm µ. Therefore [yx; t] ∈∨ qm µ. Similarly, we
get [xy; t] ∈ ∨ qm µ. Consequently, µ is a (q,∈ ∨ qm )-fuzzy left (resp.
right) ideal of R.

Theorem 3.6. If I is a left (resp. right) ideal of R, then a fuzzy
subset µ of R such that µ(x) ≥ 1−m

2 for x ∈ I and µ(x) = 0 otherwise is
an (∈∨ q , ∈∨ qm )-fuzzy left (resp. right) ideal of R.

Proof. Assume that [x; t] ∈∨ qµ and [y; r] ∈∨ qµ for all x, y ∈ R and
t, r ∈ (0, 1]. Then we have the following four cases:

(i) [x; t] ∈ µ and [y; r] ∈ µ,
(ii) [x; t] ∈ µ and [y; r] q µ,
(iii) [x; t] q µ and [y; r] ∈ µ,
(iv) [x; t] q µ and [y; r] q µ.

Cases (i) and (iv) imply that [x + y;min{t, r}] ∈∨ qm µ by the proof of
Theorems 3.4 and 3.5. Second case implies that µ(x) ≥ t and µ(y) +
r > 1. Then x, y ∈ I, and so x + y ∈ I. Thus µ(x + y) ≥ 1−m

2 . If
min{t, r} ≤ 1−m

2 , then

µ(x + y) ≥ 1−m
2 ≥ min{t, r}

and so [x + y;min{t, r}] ∈ µ. If min{t, r} > 1−m
2 , then

µ(x + y) + min{t, r}+ m > 1−m
2 + 1−m

2 + m = 1

which implies that [x+y;min{t, r}] qm µ. Thus [x+y;min{t, r}] ∈∨ qm µ.
Similarly, the third case induces the desired result. Next, let x ∈ R and
t ∈ (0, 1] be such that [x; t] ∈∨ qµ. Then [x; t] ∈ µ or [x; t] q µ. Using the
same process with the proof of Theorems 3.4 and 3.5, we conclude that
[yx; t] ∈∨ qm µ and [xy; t] ∈∨ qm µ for all y ∈ R. Consequently, µ is an
(∈∨ q , ∈∨ qm )-fuzzy left (resp. right) ideal of R.

If we take m = 0 in Theorems 3.4, 3.5 and 3.6, then we have the
following corollary.

Corollary 3.7. [9, Theorem 3.5] If I is a left (resp. right) ideal
of R, then a fuzzy subset µ of R such that µ(x) ≥ 0.5 for x ∈ I and
µ(x) = 0 otherwise is an (α, ∈∨ q )-fuzzy left (resp. right) ideal of R for
α ∈ {∈, q, ∈∨ q }.

The following example shows that there exists m ∈ [0, 1) such that the
fuzzy subset µ defined in Theorem 3.4 may not be an (∈, ∈∧ qm )-fuzzy
left (resp. right) ideal of R.
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Table 1. Cayley tables for binary operations “+” and “·”

+ 0 1 a b c

0 0 1 a b c
1 1 b 1 a 1
a a 1 a b a
b b a b 1 b
c c 1 a b c

· 0 1 a b c

0 0 0 0 0 0
1 0 1 a b c
a 0 a a a c
b 0 b a 1 c
c 0 c c c 0

Example 3.8. Consider a set R = {0, 1, a, b, c} with two binary
operations defined by Table 1. Then (R, +, ·) is a hemiring and I :=
{0, a, c} is an ideal of R (see [9, Example 3.7]). Let µ be a fuzzy subset
of R defined by

µ(x) :=





1 if x = 0,
0.4 if x ∈ {a, c},
0 if x ∈ {1, b}.

Then µ is an (α, ∈∨ q0.3)-fuzzy left (resp. right) ideal of R for α ∈ {∈, q,
∈∨ q } by Theorems 3.4, 3.5 and 3.6. But it is not an (∈, ∈∧ q0.3)-fuzzy
left (resp. right) ideal of R since [a; 0.2] ∈ µ and [c; 0.23] ∈ µ, but

[a + c;min{0.2, 0.23}] = [a; 0.2]∈∧ q0.3 µ.

Theorem 3.9. For any h-ideal I of R, let µ be a fuzzy subset of R
defined by µ(x) ≥ 1−m

2 for x ∈ I and µ(x) = 0 otherwise. Then µ is an
(α, ∈∨ qm )-fuzzy h-ideal of R, where α ∈ {∈, q, ∈∨ q }.

Proof. According to Theorems 3.4, 3.5 and 3.6, µ is an (α, ∈∨ qm )-
fuzzy ideal of R for α ∈ {∈, q, ∈∨ q }. Assume that I is an h-ideal of R
and let a, b, x, y ∈ R and t, r ∈ (0, 1] be such that x + a + y = b + y.

(1) If [a; t] ∈ µ and [b; r] ∈ µ, then µ(a) ≥ t and µ(b) ≥ r, and so
a, b ∈ I. Since I is an h-ideal, x ∈ I. Hence µ(x) ≥ 1−m

2 . If min{t, r} ≤
1−m

2 , then
µ(x) ≥ 1−m

2 ≥ min{t, r},
i.e., [x;min{t, r}] ∈ µ. If min{t, r} > 1−m

2 , then

µ(x) + min{t, r}+ m > 1−m
2 + 1−m

2 + m = 1

and thus [x;min{t, r}] qm µ. Therefore [x;min{t, r}] ∈∨ qm µ, and con-
sequently µ is an (∈, ∈∨ qm )-fuzzy h-ideal of R.

(2) If [a; t] q µ and [b; r] q µ, then µ(a)+ t > 1 and µ(b)+ r > 1, which
imply that µ(a) ≥ 1−m

2 and µ(b) ≥ 1−m
2 . Hence a, b ∈ I, and so x ∈ I
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since I is an h-ideal. Therefore µ(x) ≥ 1−m
2 . By the similar method to

the case (1), we conclude that [x;min{t, r}] ∈ ∨ qm µ. Hence µ is a (q,
∈∨ qm )-fuzzy h-ideal of R.

(3) If [a; t] ∈∨ q µ and [b; r] ∈∨ qµ, then we have the following four
cases:

(i) [a; t] ∈ µ and [b; r] ∈ µ,
(ii) [a; t] ∈ µ and [b; r] q µ,
(iii) [a; t] q µ and [b; r] ∈ µ,
(iv) [a; t] q µ and [b; r] q µ.

By the similar way to the method in (1) and (2), we have desired results
for cases (i) and (iv). Case (ii) (resp. (iii)) implies that µ(a) ≥ t and
µ(b) + r > 1 (resp. µ(a) + t > 1 and µ(b) ≥ r) so that µ(a) ≥ 1−m

2 and
µ(b) ≥ 1−m

2 . Thus a, b ∈ I, and so x ∈ I since I is an h-ideal. Therefore
µ(x) ≥ 1−m

2 , which induces [x;min{t, r}] ∈∨ qm µ. Hence µ is an (∈∨ q ,
∈∨ qm )-fuzzy h-ideal of R.

Corollary 3.10. For any k-ideal I of R, let µ be a fuzzy subset
of R defined by µ(x) ≥ 1−m

2 for x ∈ I and µ(x) = 0 otherwise. Then µ
is an (α, ∈∨ qm )-fuzzy k-ideal of R, where α ∈ {∈, q, ∈∨ q }.

Proof. It is straightforward by taking y = 0 in Theorem 3.9.

If we take m = 0 in Theorem 3.9, then we obtain the following corol-
lary.

Corollary 3.11. [9, Corollary 3.6] For any h-ideal I of R, let µ
be a fuzzy subset of R defined by µ(x) ≥ 0.5 for x ∈ I and µ(x) = 0
otherwise. Then µ is an (α, ∈∨ q )-fuzzy h-ideal of R, where α ∈ {∈, q,
∈∨ q }.

Theorem 3.12. A fuzzy subset µ of R is an (∈, ∈∨ qm )-fuzzy left
(resp. right) ideal of R if and only if it satisfies:
(1) µ(x + y) ≥ min{µ(x), µ(y), 1−m

2 },
(2) µ(yx) ≥ min{µ(x), 1−m

2 } (resp. µ(xy) ≥ min{µ(x), 1−m
2 }).

for all x, y ∈ R.

Proof. Let µ be an (∈, ∈ ∨ qm )-fuzzy left (resp. right) ideal of R.
Assume that (1) is not valid. Then there exist a, b ∈ R such that

µ(a + b) < min{µ(a), µ(b), 1−m
2 }.

If min{µ(a), µ(b)} < 1−m
2 , then µ(a + b) < t ≤ min{µ(a), µ(b)} for

some t ∈ (0, 1−m
2 ). It follows that [a; t] ∈ µ and [b; t] ∈ µ, but [a +

b; t]∈µ. Moreover, µ(a + b) + t < 2t < 1 − m and so [a + b; t] qm µ.
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Therefore [a + b; t]∈∨ qm µ, a contradiction. If min{µ(a), µ(b)} ≥ 1−m
2 ,

then µ(a) ≥ 1−m
2 , µ(b) ≥ 1−m

2 and µ(a + b) < 1−m
2 . Hence [a; 1−m

2 ] ∈ µ

and [b; 1−m
2 ] ∈ µ, but [a+b; 1−m

2 ]∈µ. Also, µ(a+b)+ 1−m
2 < 1−m

2 +1−m
2 =

1−m, i.e., [a + b; 1−m
2 ] qm µ. Hence [a + b; 1−m

2 ]∈∨ qm µ, which is also
a contradiction. Consequently, (1) is valid. Now, let x, y ∈ R and
µ(x) < 1−m

2 . If µ(yx) < µ(x), then there exists t ∈ (0, 1) such that
µ(yx) < t ≤ µ(x). This implies [x; t] ∈ µ and [yx; t]∈∨ qm µ, which
contradicts (3.2). Hence µ(yx) ≥ µ(x) = min{µ(x), 1−m

2 }. Next, let
µ(x) ≥ 1−m

2 . Then [x; 1−m
2 ] ∈ µ. If µ(yx) < 1−m

2 , then

µ(yx) + 1−m
2 < 1−m

2 + 1−m
2 = 1−m

and so [yx; 1−m
2 ]∈∨ qm µ, which contradicts (3.2). Hence µ(yx) ≥ 1−m

2 =
min{µ(x), 1−m

2 }. Similarly, we have the desired result for the right case.
Therefore (2) holds.

Conversely, suppose that two conditions (1) and (2) are valid. Let
x, y ∈ R and t, r ∈ (0, 1] be such that [x; t] ∈ µ and [y; r] ∈ µ. Then

µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 } ≥ min{t, r, 1−m

2 }.
Assume that t ≤ 1−m

2 or r ≤ 1−m
2 . Then µ(x + y) ≥ min{t, r}, and so

[x + y;min{t, r}] ∈ µ. Now, suppose that t > 1−m
2 and r > 1−m

2 . Then
µ(x + y) ≥ 1−m

2 , and thus

µ(x + y) + min{t, r} > 1−m
2 + 1−m

2 = 1−m,

i.e., [x + y;min{t, r}] qm µ. Hence [x + y;min{t, r}] ∈ ∨ qm µ. By (2),
we have µ(yx) ≥ min{µ(x), 1−m

2 } ≥ min{t, 1−m
2 }. If t ≤ 1−m

2 , then
µ(yx) ≥ t, i.e., [yx; t] ∈ µ. If t > 1−m

2 , then µ(yx)+t > 1−m
2 + 1−m

2 = 1−
m, which implies that [yx; t] qm µ. Therefore [yx; t] ∈∨ qm µ. Similarly,
[xy; t] ∈∨ qm µ. Consequently, µ is an (∈, ∈∨ qm )-fuzzy left (resp. right)
ideal of R.

If we take m = 0 in Theorem 3.12, then we have the following corol-
lary.

Corollary 3.13. [9, Lemmas 4.3, 4.4 and 4.5] A fuzzy subset µ
of R is an (∈, ∈∨ q )-fuzzy left (resp. right) ideal of R if and only if it
satisfies:
(1) µ(x + y) ≥ min{µ(x), µ(y), 0.5},
(2) µ(yx) ≥ min{µ(x), 0.5} (resp. µ(xy) ≥ min{µ(x), 0.5}).

for all x, y ∈ R.
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Lemma 3.14. Let µ be a fuzzy subset of R and let a, b, x, y ∈ R
be such that x + a + y = b + y. Then for any t, r ∈ (0, 1] the following
statements are equivalent:

(1) [a; t] ∈ µ, [b; r] ∈ µ ⇒ [x;min{t, r}] ∈∨ qm µ,
(2) µ(x) ≥ min{µ(a), µ(b), 1−m

2 }.
Proof. (1) ⇒ (2) Let a, b, x, y ∈ R be such that x + a + y = b + y. If

(2) is false, then

µ(x) < t ≤ min{µ(a), µ(b), 1−m
2 }

for some t ∈ (0, 1−m
2 ]. Hence [a; t] ∈ µ and [b; t] ∈ µ, but [x; t]∈µ. Also,

µ(x) + t ≤ 2t ≤ 1 − m, i.e., [x; t] qm µ. Therefore [x; t]∈∨ qm µ which
contracts (1). Thus (2) is valid.

(2) ⇒ (1) Let a, b, x, y ∈ R and t, r ∈ (0, 1] be such that x + a + y =
b + y, [a; t] ∈ µ and [b; r] ∈ µ. Then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } ≥ min{t, r, 1−m

2 }.
If min{t, r} ≤ 1−m

2 , then µ(x) ≥ min{t, r} and so [x;min{t, r}] ∈ µ. If
min{t, r} > 1−m

2 , then µ(x) ≥ 1−m
2 and thus

µ(x) + min{t, r} > 1−m
2 + 1−m

2 = 1−m,

i.e., [x;min{t, r}] qm µ. Therefore [x;min{t, r}] ∈∨ qm µ.

Corollary 3.15. Let µ be a fuzzy subset of R. For any a, b, x, y ∈
R and t, r ∈ (0, 1], the following are equivalent:

(1) x + a = b, [a; t] ∈ µ, [b; r] ∈ µ ⇒ [x;min{t, r}] ∈∨ qm µ,
(2) x + a = b ⇒ µ(x) ≥ min{µ(a), µ(b), 1−m

2 }.
Proof. Straightforward by taking y = 0 in Lemma 3.14.

If we take m = 0 in Lemma 3.14, then we have the following corollary.

Corollary 3.16. [9, Lemmas 4.7] Let µ be a fuzzy subset of R and
let a, b, x, y ∈ R be such that x + a + y = b + y. Then for any t, r ∈ (0, 1]
the following statements are equivalent:

(1) [a; t] ∈ µ, [b; r] ∈ µ ⇒ [x;min{t, r}] ∈∨ q µ,
(2) µ(x) ≥ min{µ(a), µ(b), 0.5}.
Combining Theorem 3.12 and Lemma 3.14, we have the following

theorem.
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Theorem 3.17. A fuzzy subset µ of R is an (∈, ∈∨ qm )-fuzzy h-
ideal of R if and only if it satisfies conditions (1) and (2) in Theorem
3.12, and

x + a + y = b + y =⇒ µ(x) ≥ min{µ(a), µ(b), 1−m
2 }(3.5)

for all a, b, x, y ∈ R.

Corollary 3.18. A fuzzy subset µ of R is an (∈, ∈ ∨ qm )-fuzzy
k-ideal of R if and only if it satisfies conditions (1) and (2) in Theorem
3.12, and Corollary 3.15(2) .

If we take m = 0 in Theorem 3.17, then we have the following corol-
lary.

Corollary 3.19. [9] A fuzzy subset µ of R is an (∈, ∈∨ q )-fuzzy
h-ideal of R if and only if it satisfies conditions (1) and (2) in Corollary
3.13, and

x + a + y = b + y =⇒ µ(x) ≥ min{µ(a), µ(b), 0.5}(3.6)

for all a, b, x, y ∈ R.

Theorem 3.20. Let µ be a fuzzy subset of R. Then µ is an (∈,
∈ ∨ qm )-fuzzy left (resp. right) ideal of R if and only if its nonempty
level set U(µ; t) is a left (resp. right) ideal of R for all t ∈ (0, 1−m

2 ].

Proof. Assume that µ is an (∈, ∈∨ qm )-fuzzy left (resp. right) ideal
of R. Let t ∈ (0, 1−m

2 ] and x, y ∈ U(µ; t). Then µ(x) ≥ t and µ(y) ≥ t.
It follows from Theorem 3.12(1) that

µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 } ≥ min{t, 1−m

2 } = t

so that x + y ∈ U(µ; t). For any x ∈ U(µ; t) and y ∈ R, we get

µ(yx) ≥ min{µ(x), 1−m
2 } ≥ min{t, 1−m

2 } = t

by Theorem 3.12(2). Thus yx ∈ U(µ; t). Similarly, xy ∈ U(µ; t). There-
fore U(µ; t) is a left (resp. right) ideal of R for all t ∈ (0, 1−m

2 ].
Conversely, suppose that U(µ; t) is a nonempty left (resp. right) ideal

of R for all t ∈ (0, 1−m
2 ]. If there exist x0, y0 ∈ R such that

µ(x0 + y0) < min{µ(x0), µ(y0), 1−m
2 },

then µ(x0 + y0) < t0 ≤ min{µ(x0), µ(y0), 1−m
2 } for some t0 ∈ (0, 1−m

2 ].
Thus x0, y0 ∈ U(µ; t0) and x0 + y0 /∈ U(µ; t0), which is a contradiction.
Hence

µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 }
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for all x, y ∈ R. If µ(y0x0) < min{µ(x0), 1−m
2 } for some x0, y0 ∈ R, then

there exists t ∈ (0, 1−m
2 ] such that µ(y0x0) < t ≤ min{µ(x0), 1−m

2 }. It
follows that x0 ∈ U(µ; t) and y0x0 /∈ U(µ; t). This is a contradiction, and
so

µ(yx) ≥ min{µ(x), 1−m
2 }

for all x, y ∈ R. Similarly, µ(xy) ≥ min{µ(x), 1−m
2 } for all x, y ∈ R.

Using Theorem 3.12, we know that µ is an (∈, ∈∨ qm )-fuzzy left (resp.
right) ideal of R.

Corollary 3.21. [9] Let µ be a fuzzy subset of R. Then µ is an
(∈, ∈∨ q )-fuzzy left (resp. right) ideal of R if and only if its nonempty
level set U(µ; t) is a left (resp. right) ideal of R for all t ∈ (0, 0.5].

Let µ be an (∈, ∈∨ qm )-fuzzy h-ideal of R and let t ∈ (0, 1−m
2 ] be such

that U(µ; t) 6= ∅. For any x, y ∈ R and a, b ∈ U(µ; t), if x+ a+ y = b + y
then µ(x) ≥ min{µ(a), µ(b), 1−m

2 } ≥ min{t, 1−m
2 } = t by (3.5), and so

x ∈ U(µ; t). Now let µ be a fuzzy subset of R such that its nonempty
level set U(µ; t) is an h-ideal of R for all t ∈ (0, 1−m

2 ]. Then µ is an (∈,
∈ ∨ qm )-fuzzy ideal of R by Theorem 3.20. Let a, b, x, y ∈ R be such
that x + a + y = b + y. Assume that

µ(x) < min{µ(a), µ(b), 1−m
2 } = tx.

Then tx ∈ (0, 1−m
2 ] and a, b ∈ U(µ; tx), but x /∈ U(µ; tx). This is a

contradiction, and so µ(x) ≥ min{µ(a), µ(b), 1−m
2 }. Therefore we have

the following theorem.

Theorem 3.22. A fuzzy subset µ of R is an (∈, ∈∨ qm )-fuzzy h-
ideal of R if and only if its nonempty level set U(µ; t) is an h-ideal of R
for all t ∈ (0, 1−m

2 ].

Corollary 3.23. A fuzzy subset µ of R is an (∈, ∈ ∨ qm )-fuzzy
k-ideal of R if and only if its nonempty level set U(µ; t) is a k-ideal of R
for all t ∈ (0, 1−m

2 ].

Corollary 3.24. [9] A fuzzy subset µ of R is an (∈, ∈∨ q )-fuzzy
h-ideal (k-ideal) of R if and only if its nonempty level set U(µ; t) is an
h-ideal (k-ideal) of R for all t ∈ (0, 0.5].

Theorem 3.25. Let {µi | i ∈ Λ} be a family of (∈,∈∨ qm )-fuzzy
h-ideals of R. Then µ :=

⋂
i∈Λ

µi is an (∈,∈∨ qm )-fuzzy h-ideal of R.

Proof. We first show that µ is an (∈,∈∨ qm )-fuzzy left (resp. right)
ideal of R. Let x, y ∈ R and t1, t2 ∈ (0, 1] be such that [x; t1] ∈ µ and
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[y, t2] ∈ µ. Assume that [x + y;min{t1, t2}]∈∨ qm µ. Then µ(x + y) <
min{t1, t2} and µ(x + y) + min{t1, t2} ≤ 1−m, which imply that

(3.7) µ(x + y) < 1−m
2 .

Let Ω1 := {i ∈ Λ | [x + y;min{t1, t2}] ∈ µi} and

Ω2 := {i ∈ Λ | [x+y;min{t1, t2}] qm µi}∩{j ∈ Λ | [x+y;min{t1, t2}]∈µj}.
Then Λ = Ω1∪Ω2 and Ω1∩Ω2 = ∅. If Ω2 = ∅, then [x+y;min{t1, t2}] ∈
µi for all i ∈ Λ, that is, µi(x+y) ≥ min{t1, t2} for all i ∈ Λ, which implies
that µ(x + y) ≥ min{t1, t2}. This is a contradiction. Hence Ω2 6= ∅, and
so for every i ∈ Ω2 we have µi(x + y) < min{t1, t2} and

µi(x + y) + min{t1, t2} > 1−m.

It follows that min{t1, t2} > 1−m
2 . Now [x; t1] ∈ µ implies µ(x) ≥ t1 and

thus µi(x) ≥ µ(x) ≥ t1 ≥ min{t1, t2} > 1−m
2 for all i ∈ Λ. Similarly

µi(y) > 1−m
2 for all i ∈ Λ. Next suppose that t := µi(x+y) < 1−m

2 . Tak-
ing t < r < 1−m

2 , we get [x; r] ∈ µi and [y, r] ∈ µi, but [x+y;min{r, r}] =
[x + y; r]∈∨ qm µi. This contradicts (3.1). Hence µi(x + y) ≥ 1−m

2 for
all i ∈ Λ, and so µ(x + y) ≥ 1−m

2 which contradicts (3.7). Therefore
[x + y;min{t1, t2}] ∈ ∨ qm µ. Similarly, we can show that if [x; t] ∈ µ,
where t ∈ (0, 1], then [xy; t] ∈∨ qm µ and [yx; t] ∈∨ qm µ for all y ∈ R.
Now, let a, b, x, y ∈ R and t, r ∈ (0, 1] be such that x + a + y = b + y,
[a; t] ∈ µ and [b; r] ∈ µ. If [x;min{t, r}]∈∨ qm µ, then µ(x) < min{t, r}
and µ(x) + min{t, r}+ m ≤ 1. It follows that

µ(x) < 1−m
2 .(3.8)

If µi(x) ≥ min{t, r} for all µi, then µ(x) ≥ min{t, r} which is impossible.
Hence µi(x)+min{t, r}+m > 1 and µi(x) < min{t, r} for some µi since
each µi is an (∈, ∈∨ qm )-fuzzy h-ideal. Thus

2 min{t, r} > µi(x) + min{t, r} > 1−m,

and so min{t, r} > 1−m
2 . Since [a; t] ∈ µ and [b; r] ∈ µ, we get µi(a) ≥

µ(a) ≥ t and µi(b) ≥ µ(b) ≥ r. It follow that

min{µi(a), µi(b)} ≥ min{µ(a), µ(b)} ≥ min{t, r} > 1−m
2 .

Suppose that µi(x) = s < 1−m
2 for some µi. Then there exists s′ ∈

(0, 1−m
2 ] such that s < s′ ≤ 1−m

2 . Thus µi(a) > 1−m
2 ≥ s′ and µi(b) >

1−m
2 ≥ s′, which imply that [a; s′] ∈ µi and [b; s′] ∈ µi. On the other

hand, µi(x) = s < s′ and µi(x)+s′ < 2s′ ≤ 1−m, that is, [x; s′]∈∨ qm µi.
This contradicts the assumption that µi is an (∈, ∈∨ qm )-fuzzy h-ideal
of R. Therefore µi(x) ≥ 1−m

2 for all µi, and consequently µ(x) ≥ 1−m
2 .
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This contradicts (3.8), and hence [x;min{t, r}] ∈∨ qm µ. This completes
the proof.

Corollary 3.26. The intersection of any family of (∈,∈ ∨ qm )-
fuzzy k-ideals of R is an (∈,∈∨ qm )-fuzzy k-ideal of R.

If we take m = 0 in Theorem 3.25 and Corollary 3.26, then we have
the following corollary.

Corollary 3.27. [9] The intersection of any family of (∈,∈∨ q )-
fuzzy h-ideals (resp. k-ideals) of R is an (∈,∈∨ q )-fuzzy h-ideal (resp.
k-ideal) of R.

Lemma 3.28. [9] A fuzzy subset µ of R is a fuzzy h-ideal (resp.
k-ideal) of R if and only if µ is an (∈, ∈)-fuzzy h-ideal (resp. k-ideal) of
R.

We provide a condition for an (∈, ∈∨ qm )-fuzzy h-ideal (resp. k-ideal)
to be an (∈, ∈)-fuzzy h-ideal (resp. k-ideal)

Theorem 3.29. Any (∈, ∈∨ qm )-fuzzy h-ideal (resp. k-ideal) µ of
R such that µ(x) < 1−m

2 for all x ∈ R is an (∈, ∈)-fuzzy h-ideal (resp.
k-ideal) of R.

Proof. Since µ(x) < 1−m
2 for all x ∈ R, it is straightforward.

Corollary 3.30. [9] Any (∈, ∈∨ q )-fuzzy h-ideal (resp. k-ideal)
µ of R such that µ(x) < 0.5 for all x ∈ R is an (∈, ∈)-fuzzy h-ideal (resp.
k-ideal) of R.

For any fuzzy subset µ of R and any t ∈ (0, 1], we consider four
subsets:

Q(µ; t) := {x ∈ R | [x; t]qµ}, [µ]t := {x ∈ R | [x; t] ∈∨ qµ},
Qm(µ; t) := {x ∈ R | [x; t] qm µ}, [µ]mt := {x ∈ R | [x; t] ∈∨ qm µ}.

It is clear that [µ]t = U(µ; t) ∪Q(µ; t) and [µ]mt = U(µ; t) ∪Qm(µ; t).

Theorem 3.31. If µ is an (∈, ∈∨ qm )-fuzzy h-ideal of R, then
(
∀t ∈ (1−m

2 , 1]
) (

Qm(µ; t) 6= ∅ ⇒ Qm(µ; t) is an h-ideal of R
)
.(3.9)

Proof. Assume that µ is an (∈, ∈ ∨ qm )-fuzzy h-ideal of R and let
t ∈ (1−m

2 , 1] be such that Qm(µ; t) 6= ∅. Let x, y ∈ Qm(µ; t). Then
[x; t] qm µ and [y; t] qm µ, i.e., µ(x) + t + m > 1 and µ(y) + t + m > 1.



General types of (α, β)-fuzzy ideals of hemirings 427

Using Theorem 3.12(1), we have

µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 }

=
{

min{µ(x), µ(y)} if min{µ(x), µ(y)} < 1−m
2 ,

1−m
2 if min{µ(x), µ(y)} ≥ 1−m

2
> 1− t−m,

that is, [x + y; t] qm µ. Hence x + y ∈ Qm(µ; t). Let x ∈ Qm(µ; t) and
y ∈ R. Then µ(x) + t + m > 1. Theorem 3.12(2) implies that

µ(yx) ≥ min{µ(x), 1−m
2 }

=
{

1−m
2 if µ(x) ≥ 1−m

2 ,
µ(x) if µ(x) < 1−m

2 ,
> 1− t−m,

that is, [yx; t] qm µ. Hence yx ∈ Qm(µ; t). Similarly, xy ∈ Qm(µ; t).
Hence Qm(µ; t) is an ideal of R. Now, let a, b ∈ Qm(µ; t) and x, y ∈ R be
such that x+a+y = b+y. Then µ(a)+ t+m > 1 and µ(b)+ t+m > 1.
Using (3.5), we get

µ(x) ≥ min{µ(a), µ(b), 1−m
2 }

=
{

min{µ(a), µ(b)} if min{µ(a), µ(b)} < 1−m
2 ,

1−m
2 if min{µ(a), µ(b)} ≥ 1−m

2
> 1− t−m,

that is, [x; t] qm µ. Therefore x ∈ Qm(µ; t), and consequently Qm(µ; t) is
an h-ideal of R.

Corollary 3.32. If µ is an (∈, ∈∨ qm )-fuzzy k-ideal of R, then(
∀t ∈ (1−m

2 , 1]
) (

Qm(µ; t) 6= ∅ ⇒ Qm(µ; t) is a k-ideal of R
)
.

If we take m = 0 in Theorem 3.31 and Corollary 3.32, then we have
the following corollaries.

Corollary 3.33. [18] If µ is an (∈, ∈∨ q )-fuzzy h-ideal of R, then(
∀t ∈ (0.5, 1]

) (
Q(µ; t) 6= ∅ ⇒ Q(µ; t) is an h-ideal of R

)
.

Corollary 3.34. [18] If µ is an (∈, ∈∨ q )-fuzzy k-ideal of R, then(
∀t ∈ (0.5, 1]

) (
Q(µ; t) 6= ∅ ⇒ Q(µ; t) is a k-ideal of R

)
.

Theorem 3.35. For any fuzzy subset µ of R, the following are
equivalent:
(1) µ is an (∈, ∈∨ qm )-fuzzy h-ideal of R.

(2) (∀t ∈ (0, 1])
(
[µ]mt 6= ∅ =⇒ [µ]mt is an h-ideal of R

)
.
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Proof. Assume that µ is an (∈, ∈ ∨ qm )-fuzzy h-ideal of R and let
t ∈ (0, 1] be such that [µ]mt 6= ∅. Let x, y ∈ [µ]mt . Then µ(x) ≥ t or
µ(x) + t + m > 1, and µ(y) ≥ t or µ(y) + t + m > 1. We can consider
four cases:

µ(x) ≥ t and µ(y) ≥ t,(3.10)
µ(x) ≥ t and µ(y) + t + m > 1,(3.11)
µ(x) + t + m > 1 and µ(y) ≥ t,(3.12)
µ(x) + t + m > 1 and µ(y) + t + m > 1.(3.13)

For the first case, Theorem 3.12(1) implies that

µ(x+y) ≥ min{µ(x), µ(y), 1−m
2 } ≥ min{t, 1−m

2 } =
{

1−m
2 if t > 1−m

2 ,
t if t ≤ 1−m

2 ,

and so µ(x + y) + t + m > 1−m
2 + 1−m

2 + m = 1, i.e, (x + y)t qm µ, or
x+y ∈ U(µ; t). Therefore x+y ∈ U(µ; t)∪Qm(µ; t) = [µ]mt . For the case
(3.11), assume that t > 1−m

2 . Then 1− t −m ≤ 1− t < 1−m
2 . Theorem

3.12(1) implies that

µ(x + y)
≥ min{µ(x), µ(y), 1−m

2 }
=

{
min{µ(y), 1−m

2 } > 1− t−m if min{µ(y), 1−m
2 } ≤ µ(x),

µ(x) ≥ t if min{µ(y), 1−m
2 } > µ(x).

Thus x + y ∈ U(µ; t) ∪ Qm(µ; t) = [µ]mt . Suppose that t ≤ 1−m
2 . Then

1− t ≥ 1−m
2 . Using Theorem 3.12(1), we obtain

µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 }

=
{

min{µ(x), 1−m
2 } ≥ t if min{µ(x), 1−m

2 } ≤ µ(y),
µ(y) > 1− t−m if min{µ(x), 1−m

2 } > µ(y),

which implies that x + y ∈ U(µ; t) ∪ Qm(µ; t) = [µ]mt . We have similar
result for the case (3.12). For the final case, if t > 1−m

2 then 1− t−m ≤
1− t < 1−m

2 . Hence

µ(x + y)
≥ min{µ(x), µ(y), 1−m

2 }
=

{
1−m

2 > 1− t−m if min{µ(x), µ(y)} ≥ 1−m
2 ,

min{µ(x), µ(y)} > 1− t−m if min{µ(x), µ(y)} < 1−m
2 ,
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and so x + y ∈ Qm(µ; t) ⊆ [µ]mt . If t ≤ 1−m
2 , then

µ(x + y)
≥ min{µ(x), µ(y), 1−m

2 }
=

{
1−m

2 ≥ t if min{µ(x), µ(y)} ≥ 1−m
2 ,

min{µ(x), µ(y)} > 1− t−m if min{µ(x), µ(y)} < 1−m
2 ,

which implies that x + y ∈ U(µ; t) ∪Qm(µ; t) = [µ]mt . Let x ∈ [µ]mt and
y ∈ R. Then µ(x) ≥ t or µ(x) + t + m > 1. Assume that µ(x) ≥ t.
Theorem 3.12(2) implies that

µ(yx) ≥ min{µ(x), 1−m
2 } ≥ min{t, 1−m

2 }
=

{
t if t ≤ 1−m

2 ,
1−m

2 > 1− t−m if t > 1−m
2

so that yx ∈ U(µ; t) ∪Qm(µ; t) = [µ]mt . Suppose that µ(x) + t + m > 1.
If t > 1−m

2 , then

µ(yx) ≥ min{µ(x), 1−m
2 } =

{
1−m

2 > 1− t−m if µ(x) ≥ 1−m
2 ,

µ(x) > 1− t−m if µ(x) < 1−m
2

and thus yx ∈ Qm(µ; t) ⊆ [µ]mt . If t ≤ 1−m
2 then

µ(yx) ≥ min{µ(x), 1−m
2 } =

{
1−m

2 ≥ t if µ(x) ≥ 1−m
2 ,

µ(x) > 1− t−m if µ(x) < 1−m
2

which implies that yx ∈ U(µ; t) ∪Qm(µ; t) = [µ]mt . Similarly, xy ∈ [µ]mt .
Now, let a, b ∈ [µ]mt and x, y ∈ R be such that x + a + y = b + y. Then
we have the following four cases:

µ(a) ≥ t and µ(b) ≥ t,(3.14)
µ(a) ≥ t and µ(b) + t + m > 1,(3.15)
µ(a) + t + m > 1 and µ(b) ≥ t,(3.16)
µ(a) + t + m > 1 and µ(b) + t + m > 1,(3.17)

and we have

µ(x) ≥ min{µ(a), µ(b), 1−m
2 }(3.18)

by (3.5). Using (3.14) and (3.18), we get µ(x) ≥ min{t, 1−m
2 }. If t ≤ 1−m

2 ,

then µ(x) ≥ t, i.e., x ∈ U(µ; t) ⊆ [µ]mt . If t > 1−m
2 , then µ(x) ≥ 1−m

2 >

1 − t −m, and so x ∈ Qm(µ; t) ⊆ [µ]mt . For the case (3.15), if t > 1−m
2

then 1− t−m < 1−m
2 and µ(a) ≥ t > 1−m

2 and so

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } = min{µ(b), 1−m

2 }
=

{
1−m

2 > 1− t−m if µ(b) ≥ 1−m
2 ,

µ(b) > 1− t−m if µ(b) < 1−m
2 .
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Hence x ∈ Qm(µ; t) ⊆ [µ]mt . If t ≤ 1−m
2 then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 }

=
{

min{µ(a), 1−m
2 } ≥ t if min{µ(a), 1−m

2 } < µ(b),
µ(b) > 1− t−m if min{µ(a), 1−m

2 } ≥ µ(b)

which implies that x ∈ U(µ; t) ∪ Qm(µ; t) ⊆ [µ]mt . Similarly, we have
x ∈ [µ]mt from (3.16) and (3.18). For the case (3.17), assume first that
t > 1−m

2 . Then 1− t−m < 1−m
2 . If min{µ(a), µ(b)} ≥ 1−m

2 , then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } = 1−m

2 > 1− t−m,

and if min{µ(a), µ(b)} < 1−m
2 then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } = min{µ(a), µ(b)} > 1− t−m.

Therefore x ∈ Qm(µ; t) ⊆ [µ]mt . Now suppose that t ≤ 1−m
2 . Then 1−t ≥

1−m
2 . If min{µ(a), µ(b)} ≥ 1−m

2 , then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } = 1−m

2 ≥ t.

If min{µ(a), µ(b)} < 1−m
2 then

µ(x) ≥ min{µ(a), µ(b), 1−m
2 } = min{µ(a), µ(b)} > 1− t−m.

Thus x ∈ U(µ; t) ∪Qm(µ; t) = [µ]mt . Consequently, [µ]mt is an h-ideal of
R.

Conversely, suppose that (2) is valid. If there exist x0, y0 ∈ R such
that µ(x0 + y0) < min{µ(x0), µ(y0), 1−m

2 }, then
µ(x0 + y0) < t0 ≤ min{µ(x0), µ(y0), 1−m

2 }
for some t0 ∈ (0, 1−m

2 ]. It follows that x0, y0 ∈ U(µ; t0) ⊆ [µ]mt0 so that
x0 + y0 ∈ [µ]mt0 . Thus µ(x0 + y0) ≥ t0 or µ(x0 + y0) + t0 + m > 1, a
contradiction. Therefore µ(x + y) ≥ min{µ(x), µ(y), 1−m

2 } for all x, y ∈
R. Assume that µ(ba) < min{µ(a), 1−m

2 } for some a, b ∈ R. Then there
exists ta ∈ (0, 1] such that µ(ba) < ta ≤ min{µ(a), 1−m

2 }. Then ta ∈
(0, 1−m

2 ] and a ∈ U(µ; ta) ⊆ [µ]mta , but ba /∈ U(µ; ta). Also, µ(ba) + ta +
m < 2ta + m ≤ 1, and so ba /∈ Qm(µ; ta). Therefore ba /∈ U(µ; ta) ∪
Qm(µ; ta) = [µ]mta , a contradiction. Hence µ(yx) ≥ min{µ(x), 1−m

2 } for
all x, y ∈ R. Similarly, µ(xy) ≥ min{µ(x), 1−m

2 } for all x, y ∈ R. Finally,
let a, b, x, y ∈ R be such that x + a + y = b + y. Suppose that µ(x) <
min{µ(a), µ(b), 1−m

2 }. Then there exists tx ∈ (0, 1] such that µ(x) < tx ≤
min{µ(a), µ(b), 1−m

2 }. Then tx ∈ (0, 1−m
2 ] and a, b ∈ U(µ; tx) ⊆ [µ]mtx ,

but x /∈ U(µ; tx). Also, µ(x) + tx + m < 2tx + m ≤ 1, that is, x /∈
Qm(µ; tx). Consequently, x /∈ [µ]mtx , a contradiction. Therefore µ(x) ≥
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min{µ(a), µ(b), 1−m
2 }. Using Theorem 3.17, we know that µ is an (∈,

∈∨ qm )-fuzzy h-ideal of R.

Corollary 3.36. For any fuzzy subset µ of R, the following are
equivalent:
(1) µ is an (∈, ∈∨ qm )-fuzzy k-ideal of R.

(2) (∀t ∈ (0, 1])
(
[µ]mt 6= ∅ =⇒ [µ]mt is a k-ideal of R

)
.

If we take m = 0 in Theorem 3.35 and Corollary 3.36, then we have
the following corollary.

Corollary 3.37. [18] For any fuzzy subset µ of R, the following
are equivalent:
(1) µ is an (∈, ∈∨ q )-fuzzy h-ideal (k-ideal) of R.

(2) (∀t ∈ (0, 1])
(
[µ]t 6= ∅ =⇒ [µ]t is an h-ideal (k-ideal) of R

)
.

4. Implication-based fuzzy h-ideals

Fuzzy logic is an extension of set theoretic multivalued logic in which
the truth values are linguistic variables or terms of the linguistic variable
truth. Some operators, for example ∧, ∨, ¬, → in fuzzy logic are also
defined by using truth tables and the extension principle can be applied
to derive definitions of the operators. In fuzzy logic, the truth value of
fuzzy proposition Φ is denoted by [Φ]. For a universe U of discourse,
we display the fuzzy logical and corresponding set-theoretical notations
used in this paper

[x ∈ µ] = µ(x),(4.1)
[Φ ∧Ψ] = min{[Φ], [Ψ]},(4.2)
[Φ → Ψ] = min{1, 1− [Φ] + [Ψ]},(4.3)
[∀xΦ(x)] = inf

x∈U
[Φ(x)],(4.4)

|= Φ if and only if [Φ] = 1 for all valuations.(4.5)

The truth valuation rules given in (4.3) are those in the Łukasiewicz sys-
tem of continuous-valued logic. Of course, various implication operators
have been defined. We show only a selection of them in the following.
(a) Gaines-Rescher implication operator (IGR):

IGR(a, b) =
{

1 if a ≤ b,
0 otherwise.
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(b) Gödel implication operator (IG):

IG(a, b) =
{

1 if a ≤ b,
b otherwise.

(c) The contraposition of Gödel implication operator (IcG):

IcG(a, b) =
{

1 if a ≤ b,
1− a otherwise.

Ying [21] introduced the concept of fuzzifying topology. We can ex-
pand his/her idea to hemirings, and we define a fuzzifying h-ideal (k-
ideal) as follows.

Definition 4.1. A fuzzy subset µ of R is called a fuzzifying left
(resp. right) ideal of R if it satisfies the following conditions:
(1) for all x, y ∈ R, we have

|= [x ∈ µ] ∧ [y ∈ µ] → [x + y ∈ µ].(4.6)

(2) for all x, y ∈ R, we get

|= [x ∈ µ] → [yx ∈ µ] (resp. |= [x ∈ µ] → [xy ∈ µ])(4.7)

Definition 4.2. A fuzzy subset µ of R is called a fuzzifying left
(resp. right) h-ideal of R if it is a fuzzifying left (resp. right) ideal of R
such that for all a, b, x, y ∈ R

x + a + y = b + y ⇒
(
|= [a ∈ µ] ∧ [b ∈ µ] → [x ∈ µ]

)
.(4.8)

Definition 4.3. A fuzzy subset µ of R is called a fuzzifying left
(resp. right) k-ideal of R if it is a fuzzifying left (resp. right) ideal of R
such that for all a, b, x ∈ R

x + a = b ⇒
(
|= [a ∈ µ] ∧ [b ∈ µ] → [x ∈ µ]

)
.(4.9)

Obviously, conditions (2.1) and (2.2) are equivalent to (4.6) and (4.7),
respectively. Therefore a fuzzifying left (resp. right) ideal is an ordinary
fuzzy left (resp. right) ideal. Also, conditions (2.3) and (2.4) are equiv-
alent to (4.8) and (4.9), respectively. Therefore a fuzzifying left (resp.
right) h-ideal (k-ideal) is an ordinary fuzzy left (resp. right) h-ideal
(k-ideal).

In [22], the concept of t-tautology is introduced, i.e.,

|=t Φ if and only if [Φ] ≥ t for all valuations.(4.10)

Definition 4.4. Let µ be a fuzzy subset of R and t ∈ (0, 1]. µ is
called a t-implication-based fuzzy left (resp. right) ideal of R if it satisfies
the following conditions:
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(1) for all x, y ∈ R, we have

|=t [x ∈ µ] ∧ [y ∈ µ] → [x + y ∈ µ].(4.11)

(2) for all x, y ∈ R, we get

|=t [x ∈ µ] → [yx ∈ µ] (resp. |=t [x ∈ µ] → [xy ∈ µ])(4.12)

Definition 4.5. Let µ be a fuzzy subset of R and t ∈ (0, 1]. µ is
called a t-implication-based fuzzy left (resp. right) h-ideal of R if it is
a t-implication-based fuzzy left (resp. right) ideal of R such that for all
a, b, x, y ∈ R,

x + a + y = b + y ⇒
(
|=t [a ∈ µ] ∧ [b ∈ µ] → [x ∈ µ]

)
.(4.13)

Definition 4.6. Let µ be a fuzzy subset of R and t ∈ (0, 1]. µ is
called a t-implication-based fuzzy left (resp. right) k-ideal of R if it is
a t-implication-based fuzzy left (resp. right) ideal of R such that for all
a, b, x ∈ R,

x + a = b ⇒
(
|=t [a ∈ µ] ∧ [b ∈ µ] → [x ∈ µ]

)
.(4.14)

Let I be an implication operator. Clearly, µ is a t-implication-based
fuzzy left h-ideal (resp. k-ideal) of R if and only if it satisfies:
(1) (∀x, y ∈ R) (I(min{µ(x), µ(y)}, µ(x + y)) ≥ t).
(2) (∀x, y ∈ R) (I(µ(x), µ(yx)) ≥ t).
(3) for all a, b, x, y ∈ R

x + a + y = b + y =⇒ I(min{µ(a), µ(b)}, µ(x)) ≥ t
(
resp. x + a = b =⇒ I(min{µ(a), µ(b)}, µ(x)) ≥ t

)
.

Theorem 4.7. For any fuzzy subset µ of R, we have
(1) If I = IGR, then µ is a 0.5-implication-based fuzzy h-ideal of R if

and only if µ is a fuzzy h-ideal of R.
(2) If I = IG, then µ is a 1−m

2 -implication-based fuzzy left h-ideal of
R if and only if µ is an (∈, ∈∨ qm )-fuzzy left h-ideal of R.

(3) If I = IcG, then µ is a 1−m
2 -implication-based fuzzy left h-ideal of

R if and only if µ satisfies the following conditions:
(3.1) (∀x, y ∈ R) (max{µ(x + y), 1−m

2 } ≥ min{µ(x), µ(y), 1}).
(3.2) (∀x, y ∈ R) (max{µ(yx), 1−m

2 } ≥ min{µ(x), 1}).
(3.3) for every a, b, x, y ∈ R

x + a + y = b + y =⇒ max{µ(x), 1−m
2 } ≥ min{µ(a), µ(b), 1}.
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Proof. (1) Straightforward.
(2) Assume that µ is a 1−m

2 -implication-based fuzzy left h-ideal of R.
Then

(a1) (∀x, y ∈ R)
(
IG(min{µ(x), µ(y)}, µ(x + y)) ≥ 1−m

2

)
,

(a2) (∀x, y ∈ R)
(
IG(µ(x), µ(yx)) ≥ 1−m

2

)
,

(a3) for all a, b, x, y ∈ R

x + a + y = b + y =⇒ IG(min{µ(a), µ(b)}, µ(x)) ≥ 1−m
2 .

From (a1), we have µ(x + y) ≥ min{µ(x), µ(y)} or

min{µ(x), µ(y)} > µ(x + y) ≥ 1−m
2 .

It follows that µ(x + y) ≥ min{µ(x), µ(y), 1−m
2 }. From (a2), we get

µ(yx) ≥ µ(x) or µ(x) > µ(yx) ≥ 1−m
2 ,

and so µ(yx) ≥ min{µ(x), 1−m
2 }. Let a, b, x, y ∈ R be such that x+a+y =

b + y. It follows from (a3) that µ(x) ≥ min{µ(a), µ(b)} or

min{µ(a), µ(b)} > µ(x) ≥ 1−m
2

so that µ(x) ≥ min{µ(a), µ(b), 1−m
2 }. Using Theorem 3.17, we know that

µ is an (∈, ∈∨ qm )-fuzzy left h-ideal of R.
Conversely, suppose that µ is an (∈, ∈∨ qm )-fuzzy left h-ideal of R.

Then

(b1) (∀x, y ∈ R)
(
µ(x + y) ≥ min{µ(x), µ(y), 1−m

2 }
)
,

(b2) (∀x, y ∈ R)
(
µ(yx) ≥ min{µ(x), 1−m

2 }
)
,

(b3) for all a, b, x, y ∈ R

x + a + y = b + y =⇒ µ(x) ≥ min{µ(a), µ(b), 1−m
2 }.

From (b1), if min{µ(x), µ(y), 1−m
2 } = min{µ(x), µ(y)} then

µ(x + y) ≥ min{µ(x), µ(y)},
and thus IG(min{µ(x), µ(y)}, µ(x + y)) = 1 ≥ 1−m

2 . If min{µ(x), µ(y),
1−m

2 } = 1−m
2 , then µ(x + y) ≥ 1−m

2 and so

IG(min{µ(x), µ(y)}, µ(x + y)) ≥ 1−m
2 .

From (b2), if min{µ(x), 1−m
2 } = µ(x), then IG(µ(x), µ(yx)) = 1 ≥ 1−m

2 .

Otherwise, IG(µ(x), µ(yx)) ≥ 1−m
2 . Let a, b, x, y ∈ R be such that x +



General types of (α, β)-fuzzy ideals of hemirings 435

a + y = b + y. It follows from (b3) that

IG(min{µ(a), µ(b)}, µ(x))

=
{

1 ≥ 1−m
2 if min{µ(a), µ(b), 1−m

2 } = min{µ(a), µ(b)},
µ(x) ≥ 1−m

2 if min{µ(a), µ(b), 1−m
2 } = 1−m

2 .

Therefore µ is a 1−m
2 -implication-based fuzzy left h-ideal of R.

(3) Suppose that µ satisfies conditions (3.1), (3.2) and (3.3). In (3.1),
if min{µ(x), µ(y), 1} = 1, then max{µ(x + y), 1−m

2 } = 1 and so

µ(x + y) = 1 ≥ min{µ(x), µ(y)}.
Hence IcG(min{µ(x), µ(y)}, µ(x+y)) = 1 ≥ 1−m

2 . If min{µ(x), µ(y), 1} =
min{µ(x), µ(y)}, then

max{µ(x + y), 1−m
2 } ≥ min{µ(x), µ(y)}.(4.15)

Thus, if max{µ(x + y), 1−m
2 } = 1−m

2 in (4.15), then

µ(x + y) ≤ 1−m
2 and min{µ(x), µ(y)} ≤ 1−m

2 .

Therefore

IcG(min{µ(x), µ(y)}, µ(x + y))

=
{

1 ≥ 1−m
2 if µ(x + y) ≥ min{µ(x), µ(y)},

1−min{µ(x), µ(y)} ≥ 1−m
2 otherwise.

If max{µ(x+y), 1−m
2 } = µ(x+y) in (4.15), then µ(x+y) ≥ min{µ(x), µ(y)}

and so IcG(min{µ(x), µ(y)}, µ(x + y)) = 1 ≥ 1−m
2 . In (3.2), if µ(x) = 1,

then max{µ(yx), 1−m
2 } = 1 and thus IcG(µ(x), µ(yx)) = 1 ≥ 1−m

2 . If
µ(x) < 1, then

max{µ(yx), 1−m
2 } ≥ µ(x).(4.16)

Thus, if max{µ(yx), 1−m
2 } = µ(yx) in (4.16), then µ(yx) ≥ µ(x). Hence

IcG(µ(x), µ(yx)) = 1 ≥ 1−m
2 .

If max{µ(yx), 1−m
2 } = 1−m

2 in (4.16), then µ(x) ≤ 1−m
2 which implies

that

IcG(µ(x), µ(yx)) =
{

1 ≥ 1−m
2 if µ(yx) ≥ µ(x),

1− µ(x) ≥ 1−m
2 otherwise.

Let a, b, x, y ∈ R be such that x+a+y = b+y. In (3.3), if min{µ(a), µ(b), 1}
= 1, then max{µ(x), 1−m

2 } = 1 and thus µ(x) = 1 ≥ min{µ(a), µ(b)}.
Therefore IcG(min{µ(a), µ(b)}, µ(x)) = 1 ≥ 1−m

2 . If min{µ(a), µ(b)} <
1, then

max{µ(x), 1−m
2 } ≥ min{µ(a), µ(b)}.(4.17)
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Thus, if µ(x) > 1−m
2 in (4.17), then µ(x) ≥ min{µ(a), µ(b)} and hence

IcG(min{µ(a), µ(b)}, µ(x)) = 1 ≥ 1−m
2 . If µ(x) ≤ 1−m

2 in (4.17), then
min{µ(a), µ(b)} ≤ 1−m

2 . Hence

IcG(min{µ(a), µ(b)}, µ(x))

=
{

1 ≥ 1−m
2 if µ(x) ≥ min{µ(a), µ(b)},

1−min{µ(a), µ(b)} ≥ 1−m
2 otherwise.

Consequently µ is a 1−m
2 -implication-based fuzzy left h-ideal of R.

Conversely, assume that µ is a 1−m
2 -implication-based fuzzy left h-

ideal of R. Then
(c1) (∀x, y ∈ R) (IcG(min{µ(x), µ(y)}, µ(x + y)) ≥ 1−m

2 ).
(c2) (∀x, y ∈ R) (IcG(µ(x), µ(yx)) ≥ 1−m

2 ).
(c3) for all a, b, x, y ∈ R

x + a + y = b + y ⇒ IcG(min{µ(a), µ(b)}, µ(x)) ≥ 1−m
2 .(4.18)

Let x, y ∈ R. (c1) implies that IcG(min{µ(x), µ(y)}, µ(x + y)) = 1, i.e.,
min{µ(x), µ(y)} ≤ µ(x + y), or 1−min{µ(x), µ(y)} ≥ 1−m

2 . Hence

max{µ(x + y), 1−m
2 } ≥ min{µ(x), µ(y)} = min{µ(x), µ(y), 1}.

From (c2), we have IcG(µ(x), µ(yx)) = 1, i.e., µ(x) ≤ µ(yx), or 1−µ(x) ≥
1−m

2 and so µ(x) ≤ 1−m
2 . It follows that

max{µ(yx), 1−m
2 } ≥ µ(x) = min{µ(x), 1}.

Let a, b, x, y ∈ R be such that x + a + y = b + y. (4.18) implies that
IcG(min{µ(a), µ(b)}, µ(x)) = 1 or 1−min{µ(a), µ(b)} ≥ 1−m

2 so that

min{µ(a), µ(b)} ≤ µ(x) or min{µ(a), µ(b)} ≤ 1−m
2 .

Therefore max{µ(x), 1−m
2 } ≥ min{µ(a), µ(b)} = min{µ(a), µ(b), 1}. Con-

sequently, µ satisfies conditions (3.1), (3.2) and (3.3).

Corollary 4.8. For any fuzzy subset µ of R, we have
(1) If I = IGR, then µ is a 0.5-implication-based fuzzy k-ideal of R if

and only if µ is a fuzzy ideal k-ideal of R.
(2) If I = IG, then µ is a 1−m

2 -implication-based fuzzy left k-ideal of
R if and only if µ is an (∈, ∈∨ qm )-fuzzy left k-ideal of R.

(3) If I = IcG, then µ is a 1−m
2 -implication-based fuzzy left k-ideal of

R if and only if µ satisfies the following conditions:
(3.1) (∀x, y ∈ R) (max{µ(x + y), 1−m

2 } ≥ min{µ(x), µ(y), 1}).
(3.2) (∀x, y ∈ R) (max{µ(yx), 1−m

2 } ≥ min{µ(x), 1}).
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(3.3) for every a, b, x ∈ R

x + a = b =⇒ max{µ(x), 1−m
2 } ≥ min{µ(a), µ(b), 1}.

Corollary 4.9. For any fuzzy subset µ of R, we have
(1) If I = IG, then µ is a 0.5-implication-based fuzzy left h-ideal (resp.

k-ideal) of R if and only if µ is an (∈, ∈ ∨ q )-fuzzy left h-ideal
(resp. k-ideal) of R.

(2) If I = IcG, then µ is a 0.5-implication-based fuzzy left h-ideal (resp.
k-ideal) of R if and only if µ satisfies the following conditions:

(2.1) (∀x, y ∈ R) (max{µ(x + y), 0.5} ≥ min{µ(x), µ(y), 1}).
(2.2) (∀x, y ∈ R) (max{µ(yx), 0.5} ≥ min{µ(x), 1}).
(2.3) for every a, b, x, y ∈ R

x + a + y = b + y =⇒ max{µ(x), 0.5} ≥ min{µ(a), µ(b), 1}
(
resp. x + a = b =⇒ max{µ(x), 0.5} ≥ min{µ(a), µ(b), 1}

)
.
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